Elektrik-Elektronik Mühendisliği Bölümü Anabilim Dalı
Bu bölüm için kalıcı URI
Yazar "Akcan, Eyyüp" Elektrik-Elektronik Mühendisliği Bölümü Anabilim Dalı seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Yapay zekâ tekniklerini kullanarak rulmanlarda arıza ve kalan faydalı ömür tahmini(Batman Üniversitesi Lisansüstü Eğitim Enstitüsü, 2025-03-05) Akcan, Eyyüp; Kaya, YılmazBu tez, endüstriyel makinelerin kritik bileşenlerinden biri olan rulmanların arıza teşhisi ve ömrü tahmini konularında yenilikçi yaklaşımlar sunmaktadır. Rulmanların arızalanması, makine performansında ciddi kayıplara ve yüksek ekonomik maliyetlere yol açabileceği için, bu alandaki erken teşhis ve ömür tahmin çalışmaları büyük bir önem taşımaktadır. Çalışmada, rulman arızalarının teşhisi için lazer ışını kullanarak yapay hatalar oluşturulmuş ve bu hatalar farklı hız ve yük koşullarında detaylı titreşim analiziyle incelenmiştir. Entropi tabanlı 18 farklı yöntemle öznitelikler çıkarılmış ve söz konusu öznitelikler Ekstrem Öğrenme Makinesi (ELM) modeli ile sınıflandırılmıştır. Özellikle Fuzzy Entropi ve Slope Entropi yöntemleri, sırasıyla %98.48 ve %100 doğruluk oranlarıyla yüksek performans sergilemiştir. Önerilen yöntem, literatürdeki diğer modern yaklaşımlarla karşılaştırıldığında üstünlük göstermiştir. Çalışmanın bir diğer önemli kısmı, MM-1D-LBP yöntemi ile öznitelik çıkarımı ve 1D-CNN-LSTM tabanlı hibrit bir model kullanılarak rulman arızalarının tahmin edilmesidir. Bu yöntemle %99.31 ile %99.65 doğruluk oranları elde edilmiştir. Literatürde sıklıkla kullanılan GRU ve LSTM tabanlı modellerle kıyaslandığında, önerilen yaklaşım daha yüksek doğruluk sunmuş ve özellikle karmaşık arıza tiplerinin sınıflandırılmasında başarılı olmuştur. Rulman ömrü tahmini kapsamında, 1D-TP ve LSTM modellerinin birleştirildiği bir yöntem geliştirilmiş ve bu yöntem, Pronostia platformundaki veri setleri üzerinde test edilmiştir. Titreşim sinyallerine dayalı olarak yapılan analizlerde, Bearing3_3 senaryosunda RMSE=0.0470 ve Score=0.6360 gibi düşük hata ve yüksek performans değerleri elde edilmiştir. Önerilen model, literatürdeki diğer yöntemlere kıyasla daha düşük hata oranları ile öne çıkmaktadır. Örneğin, Bi-LSTM (RMSE=0.2300) ve Relief-SVM (RMSE=0.2500) gibi yöntemlere kıyasla, önerilen 1D-TP+LSTM modelinin RMSE değeri 0.2074 olarak kaydedilmiş ve daha iyi bir tahmin doğruluğu sağlanmıştır. Sonuç olarak, bu çalışma, entropi tabanlı ELM ve 1D-TP+LSTM gibi yenilikçi yöntemlerle hem arıza teşhisi hem de ömür tahmini alanlarında önemli katkılar sunmaktadır. Geliştirilen modeller, endüstriyel bakım süreçlerinde daha hızlı, güvenilir ve düşük maliyetli çözümler sağlamaktadır. Çalışma bulguları hem akademik literatüre hem de endüstriyel uygulamalara değerli bir referans oluşturmaktadır. Gelecekte, farklı veri setleri ve çalışma koşullarında modelin genelleme kapasitesinin artırılması ve entropi yöntemlerinin çeşitlendirilmesi, önerilen yaklaşımların etkinliğini daha da artırabilir.