Yazar "Hazar, Yunus" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Giyilebilir dış iskelet el(Batman Üniversitesi Fen Bilimleri Enstitüsü, 2020-08-28) Hazar, Yunus; Ertuğrul ,Ömer FarukBu tez çalışmasında, felç, omurilik yaralanmaları ve tendon yaralanmaları gibi birçok nedenden dolayı el fonksiyonlarının bir kısmını veya tamamını kaybetmiş hastaların rehabilitasyonunu sağlamak ve parmak hareketlerini desteklemek amacıyla kullanılabilecek bir el dış iskelet sistemi tasarlanmıştır. Elektrikli aktüatör kullanılarak tasarımı yapılan el dış iskelet sistemi, elin ön (dorsal) kısmına yerleştirilen ve 5 parmak hareketini aktif olarak destekleyen bir yapıya sahiptir. Yapılan tasarımda başparmakta 2, diğer parmaklar için 3 olmak üzere toplam 14 aktif ekstansiyon/fleksiyon serbestlik derecesi bulunmaktadır. Ayrıca her parmak için abdüksiyon/addüksiyon ve bilekte ekstansiyon/fleksiyon hareketlerini oluşturabilmek için toplam 6 pasif serbestlik derecesine sahiptir. Elin antropometrik ölçüleri ve serbestlik dereceleri referans alınarak 3 boyutlu modelleme uygulamalarıyla iskelet sisteminin tasarımı yapılmıştır. Tasarımı basmak için hafif, dayanıklı, esnek ve tamamen doğada çözünebilen PLA (poliaktik asit) filament kullanılmıştır. 3 boyutlu yazıcıyla üretilen prototipin hafif ve taşınabilir olması hastaya evde rehabilitasyon ve günlük hayat aktivitelerinde yardımcı olma imkanı sağlayabilecek potansiyeldedir. Tasarlanan sistem için geliştirilen android uygulama ile el dış iskeletinin kontrolü sağlanmaktadır. Fizik tedavi uzmanı önerileriyle tanımlanan rehabilitasyon egzersizlerini gerçekleştiren, el hareketlerini desteklemek amacıyla sEMG, GYRO, ACC ve ORI sinyallerini kullanarak niyet algılayan ve 32 farklı el hareketini gerçek zamanlı olarak yapay zeka algoritmalarıyla sınıflandırabilen el dış iskelet sisteminin tasarımı gerçekleştirilmiştir. Geliştirilen sistemde ön kola yerleştirilen MYO kol bandı ile EMG, GYRO, ACC ve ORI sensörleriyle alınan veriler kullanılarak niyet algılama sağlanmıştır. EMG sinyalleri MVC tekniğiyle normalize edilmiş ve bu sinyallerden MAV, STD, VAR, RMS, IEMG, ZC ve WL özellik vektörleri çıkarılarak etkin özellikler seçilmiştir. Sınıflandırma aşamasında makine öğrenmesi algoritmalarından doğrusal destek vektör makineleri (SVM) kullanılarak oluşturulan 5 sınıflandırıcı paralel olarak kullanılmıştır.