Yazar "Tekin, Hazret" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Yeni bir metot olan geri beslemeli lineer regresyon ile akıllı şebekeye bağlı meskenlerde kısa dönem yük tahmini(Batman Üniversitesi Fen Bilimleri Enstitüsü, 2019-10-18) Tekin, Hazret; Ertuğrul ,Ömer FarukBir ilin ya da bölgenin şebekeden çektiği elektrik enerjisini kısa veya uzun dönemli tahmin etmek klasik elektrik iletim ve dağıtım şebekesinin yönetimi açısından oldukça önemlidir. Günümüzde ise akıllı şebekeler kapsamında artık her bir meskenin kendi özelinde şebekeden çektiği yük miktarı önem kazanmıştır. Akıllı şebekeden elektrik çeken meskenler aynı zamanda güneş enerjisi gibi alternatif enerji kaynakları ile elektrik üretebilmektedir. Bu durum göz önüne alınarak böyle bir meskenin şebekeden çektiği elektrik yükünün tahmini bu çalışmada klasik yöntemlerden lineer regresyon ve yapay sinir ağları ile test edilmiş ancak istenen oranda başarı elde edilememiştir. Bu sebeple güneş enerjisi ile elektrik üretebilen bir meskenin şebekeden çektiği elektrik miktarını tahmin etmek için yeni bir metoda gereksinim duyulmuştur. Bu sebeple bu çalışmada birçok regresyon probleminde başarılı sonuçlar üreten lineer regresyon yöntemi geliştirilerek, dinamik sistemleri modelleyebilmesi ve herhangi bir zamana ait şebekeden çekilen elektrik miktarını tahminde tahmin başarısını arttıran ve geçmiş verileri de dikkate alan geri beslemeli lineer regresyon olarak isimlendirilen yeni bir yöntem önerildi. Önerilen yaklaşımı test etmek için, Smart Project kapsamında U Toplu İz Havuzunda paylaşılan Sundance veri seti kullanılmıştır. Önerilen yöntemin başarısını doğrulamak için her bir veri setine lineer regresyon ve aşırı öğrenme metotları uygulanmıştır. 59 farklı mesken için elde edilen sonuçlara bakıldığında, geri beslemeli lineer regresyon ile elde edilen kök ortalama kare hata (RMSE) değerlerinin lineer regresyon ve aşırı öğrenme yöntemine kıyasla daha düşük olduğu yani daha başarılı tahmin sonuçları verdiği saptanmıştır. Bu başarının nedeni zaman sıralı veri setlerinde ve sinyallerde geri beslemeli yöntemlerin dinamik modelleme kabiliyetleri sayesinde sistemi daha başarılı bir şekilde modelleyebilmeleridir.