Randomized feed-forward artificial neural networks in estimating short-term power load of a small house: A case study

dc.authorid0000-0003-0710-0867en_US
dc.authorid0000-0003-4325-6922en_US
dc.authorid0000-0002-0841-6399en_US
dc.contributor.authorErtuğrul, Ömer Faruk
dc.contributor.authorTekin, Ramazan
dc.contributor.authorKaya, Yılmaz
dc.date.accessioned2019-07-04T13:06:46Z
dc.date.available2019-07-04T13:06:46Z
dc.date.issued2017-11-02en_US
dc.departmentBatman Üniversitesi Mühendislik - Mimarlık Fakültesi Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.departmentBatman Üniversitesi Mühendislik - Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractRandomized feed-forward artificial neural networks (ANNs) have been employed in various domains. This paper was written in order to assess the efficiency of the basic forms of randomized feed-forward ANNs, which are randomized weight artificial neural network, random vector functional link network, extreme learning machine, and radial bases function neural network. In order to compare these methods, a complex dataset, which is the power load of a small house dataset, was used. Obtained results showed that lower training error rates were achieved by randomized vector functional link network. On the other hand, lower test error rates were achieved by ELM. Furthermore, ELM has faster training and test stages than the other employed randomized ANNs.en_US
dc.identifier.citationErtuğrul, Ö. F., Tekin, R., Kaya, Y. (2017). Randomized feed-forward artificial neural networks in estimating short-term power load of a small house: A case study. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 16-17 Sept. 2017, Malatya, Turkey. https://doi.org/10.1109/idap.2017.8090344en_US
dc.identifier.isbn978-1-5386-1880-6
dc.identifier.isbn978-1-5386-1881-3
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/idap.2017.8090344
dc.identifier.urihttps://hdl.handle.net/20.500.12402/2182
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/idap.2017.8090344en_US
dc.relation.journal2017 International Artificial Intelligence and Data Processing Symposium (IDAP)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectExtreme Learning Machineen_US
dc.subjectRadial Bases Function Neural Networken_US
dc.subjectRandom Vector Functional Link Neural Networken_US
dc.subjectRandom Weight Neural Networken_US
dc.subjectShort-Term Power Loaden_US
dc.titleRandomized feed-forward artificial neural networks in estimating short-term power load of a small house: A case studyen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
08090344.pdf
Boyut:
305.21 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: