First boundary value problem for cordes-type semilinear parabolic equation with discontinuous coefficients

Yükleniyor...
Küçük Resim

Tarih

2020-06-19

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Hindawi

Erişim Hakkı

info:eu-repo/semantics/openAccess
Attribution-ShareAlike 3.0 United States

Özet

For a class of semilinear parabolic equations with discontinuous coefficients, the strong solvability of the Dirichlet problem is studied in this paper. The problem ∑i,j=1naijt,xuxixj-ut+gt,x,u=ft,x,uΓQT=0, in QT=Ω×0,T is the subject of our study, where Ω is bounded C2 or a convex subdomain of En+1,ΓQT=∂QT\∖t=T. The function gx,u is assumed to be a Caratheodory function satisfying the growth condition gt,x,u≤b0uq, for b0>0,q∈0,n+1/n-1,n≥2, and leading coefficients satisfy Cordes condition b0>0,q∈0,n+1/n-1,n≥2.

Açıklama

Anahtar Kelimeler

Kaynak

WoS Q Değeri

Q1

Scopus Q Değeri

Q3

Cilt

Sayı

Künye

Harman, A., Harman, E. (2020). First boundary value problem for cordes-type semilinear parabolic equation with discontinuous coefficients. Journal of Mathematics. https://doi.org/10.1155/2020/1019038