Enerji iletim Hatlarında oluşan arızaların aşırı öğrenme makinesi ile tespiti

dc.authorid0000-0003-0710-0867en_US
dc.authorid0000-0001-7789-6376en_US
dc.authorid0000-0001-5167-1101en_US
dc.contributor.authorErtuğrul, Ömer Faruk
dc.contributor.authorTağluk, Mehmet Emin
dc.date.accessioned2019-07-04T13:19:03Z
dc.date.available2019-07-04T13:19:03Z
dc.date.issued2013-06-13en_US
dc.departmentBatman Üniversitesi Mühendislik - Mimarlık Fakültesi Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractWith the increase of energy demand continuous energy transmission gained considerable attention. For a continuous energy transmission, the faulty power transmission line needs to be quickly isolated from the system. In this study, Extreme Learning Machine (ELM) possessing fast learning and high generalization capacity was used for this purpose and it was found as showing a good performance in detecting the faulty transmission line. In the study real fault signals recorded from transmission lines were used. A feature vector was formed from a cycle of the energy signal using relative entropy and classified via ELM. The obtained results were compared with the ones obtained through SVM, YSA, NB, J48 and PART learning techniques and the ones obtained in the previous studies. According the obtained results ELM both in terms of speed and performance was found superior.en_US
dc.identifier.citationErtuğrul, Ö. F., Tağluk, M. E., Kaya, Y. (2013).Enerji iletim Hatlarında oluşan arızaların aşırı öğrenme makinesi ile tespiti. 2013 21st Signal Processing and Communications Applications Conference (SIU), 24-26 April 2013, Haspolat, Turkey. https://doi.org/10.1109/siu.2013.6531209en_US
dc.identifier.isbn978-1-4673-5563-6
dc.identifier.isbn978-1-4673-5562-9
dc.identifier.isbn978-1-4673-5561-2
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/siu.2013.6531209
dc.identifier.urihttps://hdl.handle.net/20.500.12402/2197
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/siu.2013.6531209en_US
dc.relation.journal2013 21st Signal Processing and Communications Applications Conference (SIU)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectEnerji İletim Hattıen_US
dc.subjectArıza Tespitien_US
dc.subjectBağıl Entopien_US
dc.subjectAşırı Makine Öğrenmesien_US
dc.subjectComponenten_US
dc.subjectELMen_US
dc.subjectFault Detectionen_US
dc.subjectRelative Entropyen_US
dc.subjectTransmission Lineen_US
dc.titleEnerji iletim Hatlarında oluşan arızaların aşırı öğrenme makinesi ile tespitien_US
dc.title.alternativeFault detection at power transmission lines by extreme learning machineen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
06531209.pdf
Boyut:
1.34 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: