PID controller design for controlling integrating processes with dead time using generalized stability boundary locus
dc.authorid | 0000-0002-4525-2856 | en_US |
dc.authorid | 0000-0001-7297-7441 | en_US |
dc.authorid | 0000-0003-0611-225X | en_US |
dc.contributor.author | Atiç, Serdal | |
dc.contributor.author | Çökmez, Erdal | |
dc.contributor.author | Peker, Fuat | |
dc.contributor.author | Kaya, İbrahim | |
dc.date.accessioned | 2019-06-25T06:52:55Z | |
dc.date.available | 2019-06-25T06:52:55Z | |
dc.date.issued | 2018 | en_US |
dc.department | Batman Üniversitesi Meslek Yüksekokulu Elektrik ve Enerji Bölümü | en_US |
dc.description.abstract | This paper proposes a method so that all PID controller tuning parameters, which are satisfying stability of any integrating time delay processes, can be calculated by forming the stability boundary loci. Processes having a higher order transfer function must first be modeled by an integrating plus first order plus dead time (IFOPDT) transfer function in order to apply the method. Later, IFOPDT process transfer function and the controller transfer function are converted to normalized forms to obtain the stability boundary locus in (KKcT, KKc(T2 / Ti)), (KKcT, KKcTd) and (KKc(T2/Ti), KKcTd) planes for PID controller design. PID controller parameter values achieving stability of the control system can be determined by the obtained stability boundary loci. The advantage of the method given in this study compared with previous studies in this subject is to remove the need of re-plotting the stability boundary locus as the process transfer function changes. That is, the approach results in somehow generalized stability boundary loci for integrating plus time delay processes under a PID controller. Application of the method has been clarified with examples. | en_US |
dc.identifier.citation | Atic, S., Çökmez, E., Peker, F.,Kaya, İ. (2018). PID controller design for controlling integrating processes with dead time using generalized stability boundary locus. IFAC-PapersOnLine, 51(4), pp. 924-929. https://doi.org/10.1016/j.ifacol.2018.06.104 | en_US |
dc.identifier.endpage | 929 | en_US |
dc.identifier.issn | 2405-8963 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 924 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.ifacol.2018.06.104 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12402/2107 | |
dc.identifier.volume | 51 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | IFAC Secretariat | en_US |
dc.relation.isversionof | 10.1016/j.ifacol.2018.06.104 | en_US |
dc.relation.journal | IFAC-PapersOnLine | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-ShareAlike 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/us/ | * |
dc.subject | Dead Time | en_US |
dc.subject | Modeling | en_US |
dc.subject | PI Controller | en_US |
dc.subject | PID Controller | en_US |
dc.subject | Stability | en_US |
dc.subject | Transfer Functions | en_US |
dc.title | PID controller design for controlling integrating processes with dead time using generalized stability boundary locus | en_US |
dc.type | Article | en_US |