Recognition of daily and sports activities

dc.authorid0000-0002-5933-6444en_US
dc.authorid0000-0003-0710-0867en_US
dc.contributor.authorİnanç, Nihat
dc.contributor.authorKayri, Murat
dc.contributor.authorErtuğrul, Ömer Faruk
dc.date.accessioned2019-07-04T13:00:35Z
dc.date.available2019-07-04T13:00:35Z
dc.date.issued201-01-24en_US
dc.departmentBatman Üniversitesi Mühendislik - Mimarlık Fakültesi Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractSince being physically inactive was reported as one of the major risk factor of mortality, classifying daily and sports activities becomes a critical task that may improve human life quality. In this paper, the daily and sports activities dataset was used in order to evaluate and validate the employed approach. In this approach, the statistical features were extracted from the histograms of the local changes in the wearable sensors logs were obtained by one-dimensional local binary patterns. Later, extracted features were classified by extreme learning machines. Results were showed that the proposed approach is enough to recognize the action type, but in order to recognize the actions, or gender, different feature extraction methods must be employed.en_US
dc.identifier.citationİnanç, N., Kayri, M., & Ertuğrul, Ö. F. (2018). Recognition of Daily and Sports Activities. 2018 IEEE International Conference on Big Data (Big Data), 10-13 Dec. 2018, Seattle, WA, USA. https://doi.org/10.1109/bigdata.2018.8622055en_US
dc.identifier.isbn978-1-5386-5035-6
dc.identifier.isbn978-1-5386-5034-9
dc.identifier.isbn978-1-5386-5036-3
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/bigdata.2018.8622055
dc.identifier.urihttps://hdl.handle.net/20.500.12402/2175
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/bigdata.2018.8622055en_US
dc.relation.journal2018 IEEE International Conference on Big Data (Big Data)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectAction Recognitionen_US
dc.subjectDaily and Sports Activityen_US
dc.subjectGender Recognitionen_US
dc.subjectWearable Sensoren_US
dc.titleRecognition of daily and sports activitiesen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
08622055.pdf
Boyut:
378.27 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: