Determining relevant features in estimating short-term power load of a small house via feature selection by extreme learning machine

Yükleniyor...
Küçük Resim

Tarih

2017-11-02

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE

Erişim Hakkı

info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-ShareAlike 3.0 United States

Özet

Estimating short-term power load is a fundamental issue in the power distribution system. Since short-term power load is related to many parameters such as weather conditions, and time. The aim of this study is to determine the relevant parameters in estimating short-term power load not only in order to decrease the computational cost, but also to achieve higher success rates. Furthermore, by using selected features the required memory, equipment and communication costs are also decreased in real time applications. Feature selection by extreme learning machine method was used in determining relevant features. The short-term power loads of two houses (one of them has a power generation capability) were used in tests and achieved results showed lower error rates were obtained by using less number of features.

Açıklama

Anahtar Kelimeler

Extreme Learning Machine, Feature Selection, Short-Term Power Load

Kaynak

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

Sayı

Künye

Ertuğrul, Ö F., Sezgin, N., Öztekin, A., Tağluk, M. E. (2017). Determining relevant features in estimating short-term power load of a small house via feature selection by extreme learning machine. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 16-17 Sept. 2017, Malatya, Turkey. https://doi.org/10.1109/idap.2017.8090345