An efficient noisy pixels detection model for CT images using extreme learning machines

dc.authorid0000-0001-5039-6400en_US
dc.authorid0000-0002-0956-9725en_US
dc.contributor.authorÇalışkan, Abidin
dc.contributor.authorÇevik, Ulus
dc.date.accessioned2019-06-26T11:43:27Z
dc.date.available2019-06-26T11:43:27Z
dc.date.issued2018-06en_US
dc.departmentBatman Üniversitesi Mühendislik - Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn this study, a new and rapid hidden resource decomposition method has been proposed to determine noisy pixels by adopting the extreme learning machines (ELM) method. The goal of this method is not only to determine noisy pixels, but also to protect critical structural information that can be used for disease diagnosis. In order to facilitate the diagnosis and also the treatment of patients in medicine, two-dimensional (2-D) images were calculated tomography (CT) which is obtained using medical imaging techniques. Utilizing a large number of CT images, promising results have been obtained from these experiments. The proposed method has shown a significant improvement on mean squared error and peak signal-to-noise ratio. The experimental results indicate that the proposed method is statistically efficient, and it has a good performance with a high learning speed. In the experiments, the results demonstrated that remarkable successive rates were obtained through the ELM method.en_US
dc.identifier.citationÇalışkan, A., Çevik, U. (2018). An efficient noisy pixels detection model for CT images using extreme learning machines. Tehnicki Vjesnik 25(3), pp. 679-686. https://doi.org/10.17559/tv-20171220221947en_US
dc.identifier.endpage686en_US
dc.identifier.issn1330-3651
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage679en_US
dc.identifier.urihttps://doi.org/10.17559/tv-20171220221947
dc.identifier.urihttps://hdl.handle.net/20.500.12402/2132
dc.identifier.volume25en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSveuciliste Josipa Jurja Strossmayera u Osijekuen_US
dc.relation.isversionof10.17559/tv-20171220221947en_US
dc.relation.journalTehnicki Vjesniken_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectDetectionen_US
dc.subjectELMen_US
dc.subjectFilteringen_US
dc.subjectMedical Imagingen_US
dc.subjectMSEen_US
dc.subjectPSNRen_US
dc.titleAn efficient noisy pixels detection model for CT images using extreme learning machinesen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
tv_25_2018_3_679_686.pdf
Boyut:
3.09 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: