EMG sinyallerinin aşırı ögrenme makinesi ile sınıflandırılması

dc.authorid0000-0003-0710-0867en_US
dc.authorid0000-0001-7789-6376en_US
dc.authorid0000-0001-5167-1101en_US
dc.contributor.advisorBatman Üniversitesi Mühendislik - Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorErtuğrul, Ömer Faruk
dc.contributor.authorTağluk, Mehmet Emin
dc.contributor.authorKaya, Yılmaz
dc.contributor.authorTekin, Ramazan
dc.date.accessioned2019-07-04T13:20:00Z
dc.date.available2019-07-04T13:20:00Z
dc.date.issued2013-06-13en_US
dc.departmentBatman Üniversitesi Mühendislik - Mimarlık Fakültesi Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractFrom disease detection to action assessment EMG signals are used variety of field. Miscellaneous studies have been conducted toward analysis of EMG signals. In this study some statistical features of signal were derived, the best evocative features were selected via Linear Discriminant Analysis (LDA) and feature vectors were constructed. This analytic feature vectors were classified through Extreme Learning Machine (ELM). 8 channel EMG signals recorded from 10 normal and 10 aggressive actions were used as an example. By cross-comparison of the obtained results to the ones obtained via various feature identifying methods (AR coefficients, wavelet energy and entropy) and classification methods (NB, SVM, LR, ANN, PART, Jrip, J48 and LMT) the success of the proposed method was determined.en_US
dc.identifier.citationErtuğrul, Ö F., Tağluk, M. E., Kaya, Y., Tekin, R. (2013). EMG sinyallerinin aşırı ögrenme makinesi ile sınıflandırılması. 2013 21st Signal Processing and Communications Applications Conference (SIU), 24-26 April 2013, Haspolat, Turkey. https://doi.org/10.1109/siu.2013.6531269en_US
dc.identifier.isbn978-1-4673-5563-6
dc.identifier.isbn978-1-4673-5562-9
dc.identifier.isbn978-1-4673-5561-2
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/siu.2013.6531269
dc.identifier.urihttps://hdl.handle.net/20.500.12402/2198
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/siu.2013.6531269en_US
dc.relation.journal2013 21st Signal Processing and Communications Applications Conference (SIU)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectEMGen_US
dc.subjectAyırma Analizien_US
dc.subjectAşırı Öğrenme Makinelerien_US
dc.subjectİstatistiki Parametreleren_US
dc.subjectDiscriminant Analysisen_US
dc.subjectExtreme Learning Machineen_US
dc.subjectStatistical Parametersen_US
dc.titleEMG sinyallerinin aşırı ögrenme makinesi ile sınıflandırılmasıen_US
dc.title.alternativeEMG signal classification by extreme learning machineen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
06531269.pdf
Boyut:
889.44 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: