Farklı tasarımlara sahip hava akışkanlı güneş kollektörlerinin deneysel analizi
Yükleniyor...
Dosyalar
Tarih
2021-06-03
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Batman Üniversitesi, Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-ShareAlike 3.0 United States
Attribution-NonCommercial-ShareAlike 3.0 United States
Özet
Günümüzde enerji elde etmek için çok farklı çalışmalar yapılmaktadır. Yapılan bu çalışmalar genelde
yenilenebilir enerji kaynakları üzerinde olmaktadır. Çünkü yenilenebilir enerji kaynakları hem çevreye zarar
vermez hem de sürekli enerji kaynağıdır. Yenilenebilir enerji kaynakları: Rüzgâr enerjisi, Jeotermal enerji,
Güneş Enerjisi vb. şeklinde sıralanabilir. Bu kaynaklardan elde edilen enerjinin doğa üzerinde olumsuz bir etkisi
yoktur. Bundan dolayı petrol türevli yakıtların atmosfere vermiş olduğu tahribat yenilenebilir enerji sayesinde
önlenmiş olacaktır. Bu çalışmada içyapısı farklı şekilde tasarlanan üç farklı havalı güneş kollektörünün
kıyaslanması 41o’açıda ve 3m/s ile 6,5m/s hava hızında çalıştırılarak deneyler yapılmıştır. Birinci kollektör
herhangi bir işlem yapılmamış olup düz plaka sacdan oluşan geleneksel bir havalı güneş kollektörü tipidir. İkinci
kollektörde havanın ısı transferini artırmak için atık kola kutuları seri bir şekilde tasarlanarak yerleştirilmiştir.
Üçüncü kollektör ise atık kutuların paralel bir şekilde tasarlanmasıyla oluşturulmuştur. Kola kutularından imal
edilen kollektörlerimizin ısıyı daha iyi emmesi için siyah mat boya ile boyanmıştır. Boruların altına monte edilen
yalıtım malzemesi ise kendisinden yansıyacak olan ışınları borulara vereceği düşünülerek parlak bırakılmıştır,
bu sayede birim yüzeye gelecek güneş ışınının daha fazla olacağı düşünülmüştür.
Yapılan deneyler sonucunda düz yüzeyli havalı güneş kollektöründe 6,5m/s kütlesel debide en yüksek
sıcaklık 88oC olarak elde edilirken, kola kutularından tasarlanan seri bağlantılı havalı güneş kollektörünün en
yüksek sıcaklığı 101oC, paralel bağlantılı havalı güneş kollektöründe ise en yüksek sıcaklık 97oC olarak tespit
edilmiştir. 20 Ağustos 2021 tarihinde 3m/s kütlesel debide düz yüzeyli kollektörde sıcaklık 101oC olarak
ölçülmüş, seri kollektörde elde edilen en yüksek sıcaklık 101oC olarak ölçüldü. Paralel bağlantılı kollektörde ise
sıcaklık 110oC olarak ölçüldüğü görüldü. 15 Ağustos 2021 tarihinde 6,5m/s kütlesel debide yapılan ölçümlerde
giriş ve çıkış sıcaklık farklarına bakıldığında ise saat 09:00’da alınan verilerde, düz kollektörde sıcaklık farkının
23oC, paralel kollektörde 33oC ve seri kollektörde sıcaklık farkının 35oC olduğu görüldü. Düz kollektörde
maksimum sıcaklık farkının saat 12:20’de 30oC olduğu, paralel kollektörde maksimum sıcaklık farkı saat 12:00’
da 56oC olduğu ve seri kollektörde ise maksimum sıcaklık farkı 11:40’da 56oC olduğu görüldü. Saat 16:00’da
ise düz kollektörde sıcaklık farkının 27oC, paralel kollektörde 19oC ve seri kollektörde sıcaklık farkının 37oC
olduğu gözlemlendi. 20 Ağustos 2021 tarihinde 3m/s hızda yapılan ölçümlerde ise saat 09:00’da yapılan
ölçümlerde düz kollektörde sıcaklık farkı 33 oC, seri kollektörde sıcaklık farkı 35oC paralel kollektörde oluşan
sıcaklık farkı ise 33oC olarak ölçüldü. Düz kollektörde maksimum farkı saat 12:40’da olduğu, paralel kollektörde
maksimum sıcaklık farkı saat 11:20’de 68oC olduğu ve seri kollektörde ise maksimum farkın 11:00’da 59oC
olduğu görüldü. Saat 16:00’da ise düz kollektörde sıcaklık farkının 33oC, paralel kollektörde 50oC ve seri
kollektörde sıcaklık farkının 35oC olduğu gözlemlendi. Elde edilen sonuçlara göre sistem 6,5m/s hızda
çalıştırıldığında seri kollektör daha iyi sonuçlar verirken, 3m/s hızda çalıştırıldığında paralel kollektörün daha
iyi sonuçlar verdiği görüldü. Yapılan hesaplamalar sonucunda ise 6.5m/s hızda en iyi verimi seri kollektör
verirken, 3m/s hızda ise en iyi verimi paralel kollektör vermiştir.
Nowadays, a lot of different operations are being made to produce energy. These operations are generally performed on renewable energy resources. Because renewable energy sources don’t harm the nature and they are everlasting resources. Renewable energy sources can be listed as wind energy, geothermic energy and solar energy etc. The energy produced from these resources has no negative impact on nature. So, the hazard of petroleum-derived sources on atmosphere will be avoided thanks to the use renewable energy sources. In this study, the comparison of three different solar collectors that has different internal structure is made by operating them at 3m/s and 6.5m/s air velocity at 41o degree Celsius. The first collector wasn’t touched in anyway and it consisted of a flat sheet metal, which is a conventional solar air collector. The second collector was placed by connecting coke cans in series in order to increase heat transfer of the air. The third collector was designed parallelly with waste cans and placed. Our coke can manufactured solar collectors was painted with matte black paint in order to absorb the heat better. Also, the insulating material mounted under the pipes were left polished in thinking they would reflect sunlight to the pipes and more of the pipe surface would benefit from sunlight. After experimenting on the solar collectors; At 6,5m/s air velocity for flat surfaced solar air collector the highest acquired temperature was 88oCelcius. For serially connected solar air collector manufactured with coke cans the highest acquired temperature was 101oCelcius and for parallelly connected solar air collector the highest acquired temperature was 97oCelcius. On August 20 at 3m/s air velocity the highest temperature in flat surfaced solar collector was 101oCelcius, the highest temperature in serially connected solar collector was also 101oCelcius and the highest temperature in parallelly connected solar collector was 110oCelcius. When we look at the input and output heat measurements performed at 6,5 m/s air velocity on 20 August 2021, the measurements taken at 9:00 a.m. the heat difference for the flat surfaced collector was 23oCelcius, for parallelly connected solar connector was 33oCelcius and for serially connected solar collector was 35oCelcius. It is observed that the maximum difference in flat surfaced solar collector 30 oCelcius was at 12:20 a.m with 32oCelcius , in parallelly connected solar collector was at 12:00 a.m. with 56oCelcius and in serially connected solar collector was at 11:40 a.m. with 56 oCelcius. At 16:00 p.m. the heat difference in flat surfaced sollar collector was 27 oCelcius, in parallely connected solar collector was 19 oCelcius and in serially connected solar collector was 37 oCelcius. When we look at the input and output heat measurements performed at 3m/s air velocity on 20 August 2021, the measurements taken at 9:00 a.m. the heat difference for the flat surfaced collector was 33oCelcius, for serially connected solar collector was 35oCelcius and for parallelly connected solar connector was 35oCelcius. It is observed that the maximum difference in flat surfaced solar collector was at 12:40 a.m with Celcius , in parallelly connected solar collector was at 11:20 a.m. with 68oCelcius and in serially connected solar collector was at 11:00 a.m. with 59 oCelcius. At 16:00 p.m. the heat difference in flat surfaced sollar collector was 33 oCelcius, in parallelly connected solar collector was 50 oCelcius and in serially connected solar collector was 35 oCelcius. According to acquired results when the system works at 6,5m/s air velocity serially connected solar collector gives better results and when the system works at 6,5m/s air velocity parallelly connected solar collector gives better results. According to measurements at 6,5m/s air velocity the most efficient one is serially connected solar collector and at 3m/s air velocity the most efficient one is parallelly connected solar connector
Nowadays, a lot of different operations are being made to produce energy. These operations are generally performed on renewable energy resources. Because renewable energy sources don’t harm the nature and they are everlasting resources. Renewable energy sources can be listed as wind energy, geothermic energy and solar energy etc. The energy produced from these resources has no negative impact on nature. So, the hazard of petroleum-derived sources on atmosphere will be avoided thanks to the use renewable energy sources. In this study, the comparison of three different solar collectors that has different internal structure is made by operating them at 3m/s and 6.5m/s air velocity at 41o degree Celsius. The first collector wasn’t touched in anyway and it consisted of a flat sheet metal, which is a conventional solar air collector. The second collector was placed by connecting coke cans in series in order to increase heat transfer of the air. The third collector was designed parallelly with waste cans and placed. Our coke can manufactured solar collectors was painted with matte black paint in order to absorb the heat better. Also, the insulating material mounted under the pipes were left polished in thinking they would reflect sunlight to the pipes and more of the pipe surface would benefit from sunlight. After experimenting on the solar collectors; At 6,5m/s air velocity for flat surfaced solar air collector the highest acquired temperature was 88oCelcius. For serially connected solar air collector manufactured with coke cans the highest acquired temperature was 101oCelcius and for parallelly connected solar air collector the highest acquired temperature was 97oCelcius. On August 20 at 3m/s air velocity the highest temperature in flat surfaced solar collector was 101oCelcius, the highest temperature in serially connected solar collector was also 101oCelcius and the highest temperature in parallelly connected solar collector was 110oCelcius. When we look at the input and output heat measurements performed at 6,5 m/s air velocity on 20 August 2021, the measurements taken at 9:00 a.m. the heat difference for the flat surfaced collector was 23oCelcius, for parallelly connected solar connector was 33oCelcius and for serially connected solar collector was 35oCelcius. It is observed that the maximum difference in flat surfaced solar collector 30 oCelcius was at 12:20 a.m with 32oCelcius , in parallelly connected solar collector was at 12:00 a.m. with 56oCelcius and in serially connected solar collector was at 11:40 a.m. with 56 oCelcius. At 16:00 p.m. the heat difference in flat surfaced sollar collector was 27 oCelcius, in parallely connected solar collector was 19 oCelcius and in serially connected solar collector was 37 oCelcius. When we look at the input and output heat measurements performed at 3m/s air velocity on 20 August 2021, the measurements taken at 9:00 a.m. the heat difference for the flat surfaced collector was 33oCelcius, for serially connected solar collector was 35oCelcius and for parallelly connected solar connector was 35oCelcius. It is observed that the maximum difference in flat surfaced solar collector was at 12:40 a.m with Celcius , in parallelly connected solar collector was at 11:20 a.m. with 68oCelcius and in serially connected solar collector was at 11:00 a.m. with 59 oCelcius. At 16:00 p.m. the heat difference in flat surfaced sollar collector was 33 oCelcius, in parallelly connected solar collector was 50 oCelcius and in serially connected solar collector was 35 oCelcius. According to acquired results when the system works at 6,5m/s air velocity serially connected solar collector gives better results and when the system works at 6,5m/s air velocity parallelly connected solar collector gives better results. According to measurements at 6,5m/s air velocity the most efficient one is serially connected solar collector and at 3m/s air velocity the most efficient one is parallelly connected solar connector
Açıklama
Anahtar Kelimeler
Kollektör, Enerji, Kola Kutusu, Güneş, Verim, Sıcaklık, Collector, Energy, Coke Can, Solar, Efficiency, Temperature
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Er, A. (2021). Farklı tasarımlara sahip hava akışkanlı güneş kollektörlerinin deneysel analizi. (Yayınlanmamış Yüksek Lisans Tezi). Batman Üniversitesi Fen Bilimleri Enstitüsü, Batman.