3 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 3 / 3
Öğe Silica gel-immobilized 5-aminoisophthalohydrazide: A novel sorbent for solid phase extraction of Cu, Zn and Pb from natural water samples(Wiley Online Library, 2020-03-11) Aydın, Funda; Çakmak, Reşit; Levent, Abdulkadir; Soylak, MustafaA novel silica sorbent, silica gel‐immobilized 5‐aminoisophthalohydrazide (SiO2‐APH), was prepared by the condensation of 3‐chloropropyl‐functionalized silica gel with 5‐aminoisophthalohydrazide (APH) derived from dimethyl 5‐aminoisophthalate as a starting material and used for separation and preconcentration of Cu, Zn, and Pb metals in water samples using Flame Atomic Absorption Spectrometry (FAAS). The characterization of the new sorbent was carried out by Elemental Analysis, Thermogravimetric Analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Important analytical parameters including as pH, amount of sorbent, type and amount of eluting solvent, sample volume, vortex and ultrasonic bath time, matrix ions that effect the developed SiO2‐APH‐solid phase extraction (SPE) method were investigated and optimum parameters were detected. Recoveries of examined metals were obtained as 98% for Cu and Pb and 101% for Zn. The relative standard deviation (RSD, n = 8) of Cu, Zn and Pb metals were 3.2, 2.8 and 1.6%, respectively. Limit of detections (LODs) (n = 10) were found as 2.7 μg L−1 for Cu, 7.4 μg L−1 for Zn and 3.5 μg L−1 for Pb μg L−1. The accuracy of the new method was assessed by analyzing of TMDA‐51.4 and TMDA‐70.2 certified reference materials. The results obtained for metals were in a good agreement with certified values. Addition/recovery test was applied to the real well, river, dam and stream water samples to check the accuracy of the method. The results showed that the developed SiO2‐APH‐SPE method can be effectively used as an alternative method for determination of Cu, Zn, and Pb metals in water samples.Öğe Design, preparation and application of a Pirkle-type chiral stationary phase for enantioseparation of some racemic organic acids and molecular dynamics studies(ACG Publications, 2017-11) Çakmak, Reşit; Ercan, Selami; Sünkür, Murat; Yılmaz, Hayrullah; Topal, GirayThis study consists of two parts. In the first part of the study; a Pirkle-type chiral stationary phase was prepared by synthesizing an aromatic amine derivative of (R)-2-amino-1-butanol as a chiral selector and binding to L-tyrosine-modified cyanogen bromide (CNBr)-activated Sepharose 4B and then, packed into the separation column. The chromatographic performance of the separation column was evaluated with racemic mandelic acid and 2-phenylpropionic acid by using phosphate buffers at three different pHs as mobile phase. In the resolution processes, the prepared solutions were loaded onto the separation column at two different concentrations and at three different pHs for each racemic organic acid, separately. Enantiomeric excess (ee%) of the eluates was determined on CHIRALPAK AD-H chiral analytical column by HPLC. The maximum ee% for mandelic acid and 2-phenylpropionic acid was determined to be 60.84 and 27.4, respectively. Separation factors (k1 ’ , k2 ’ , α, and Rs) were calculated for each acid. The structures of the obtained compounds were characterized using the spectroscopic methods (NMR, and elemental analysis). In the second part of the study; enantioselective interactions between the prepared CSP and the analytes have been widely studied by docking, molecular dynamics simulation and quantum mechanical computation methods. The reason of column eluation of rac-2-phenylpropionic acid with lower enantiomeric yield was explained by these techniques.Öğe Magnetite nanoparticles grafted with murexide-terminated polyamidoamine dendrimers for removal of lead (II) from aqueous solution: synthesis, characterization, adsorption and antimicrobial activity studies(Journals & Books, 2021-03) Ekinci, Selma; İlter, Zülfiye; Ercan, Selami; Çınar, Ercan; Çakmak, ReşitIn this study, new, efficient, eco-friendly and magnetically separable nanoadsorbents, MNPs-G1-Mu and MNPs-G2-Mu, were successfully prepared by covalently grafting murexide-terminated polyamidoamine dendrimers on 3-aminopropyl functionalized silica-coated magnetite nanoparticles, and used for rapid removal of lead (II) from aqueous medium. After each adsorption process, the supernatant was successfully acquired from reaction mixture by the magnetic separation, and then analyzed by employing ICP-OES. Chemical and physical characterizations of new nanomaterials were confirmed by XRD, FT-IR, SEM, TEM, and VSM. Maximum adsorption capacities (qm) of both prepared new nanostructured adsorbents were compared with each other and also with some other adsorbents. The kinetic data were appraised by using pseudo-first-order and pseudo-second-order kinetic models. Adsorption isotherms were found to be suitable with both Langmuir and Freundlich isotherm linear equations. The maximum adsorption capacities for MNPs-G1-Mu and MNPs-G2-Mu were calculated as 208.33 mg g−1 and 232.56 mg g−1, respectively. Antimicrobial activities of nanoparticles were also examined against various microorganisms by using microdilution method. It was determined that MNPs-G1-Mu, MNPs-G2-Mu and lead (II) adsorbed MNPs-G2-Mu showed good antimicrobial activity against S. aureus ATTC 29213 and C. Parapsilosis ATTC 22019. MNPs-G1-Mu also showed antimicrobial activity against C. albicans ATTC 10231.