Arama Sonuçları

Listeleniyor 1 - 3 / 3
  • Öğe
    Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine
    (Elsevier, 2009-02-15) Altun, Şehmus; Öner, Cengiz
    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.
  • Öğe
    The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine
    (Elsevier, 2008-01-09) Altun, Şehmus; Bulut, Hüsamettin; Öner, Cengiz
    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters.
  • Öğe
    Hayvansal iç yağlardan transesterifikasyon reaksiyonu ile biyodizel üretilmesi
    (Doğu Anadolu Bölgesi Araştırma ve Uygulama Merkezi, 2008-07-31) Altun, Şehmus; Öner, Cengiz
    Hayvansal yağlar normal çevre sıcaklığında katı ve çok viskozdurlar. Yüksek viskozitelerinden dolayı dizel motorlarında kullanılmadan önce modifiye edilmeleri gerekmektedir. Hayvansal yağların dizel motorlarında kullanılabilirliliğini iyileştirmek için emülsiyon ve transesterifikasyon etkili iki yöntemdir. Bu çalışmada hayvansal iç yağlardan baz katalizörlü transesterifikasyon ile %99.7 saflıkta metil alkol ve katalizör olarak %98 saflıkta NaOH kullanılarak hayvansal iç yağı metil esteri (biyodizel) üretilmiştir. Hayvansal iç yağı, metil ester şekline dönüştükten sonra viskozitesi önemli ölçüde azalmış ve oda sıcaklığında sıvı fazında bir yakıt elde edilmiştir. Biyodizelin belirlenen yakıt özellikleri ASTM standartlarında olup, viskozitesi ve yoğunluğu dizel yakıtına yakın, ısıl değeri ise %8 daha düşük çıkmıştır.