5 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 5 / 5
Öğe Effects of DME on performance and emissions of biodiesel in a diesel engine powered generator(İstanbul Teknik Üniversitesi, 2016-10) Aydın, Hüseyin; İşcan, BahattinThis paper investigates the effects of DME-biodiesel, biodiesel and diesel fuels on the performance and emission characteristics of a diesel engine powered electrical generator at idle and medium loads. In the tests 75% of the safflower oil biodiesel was blended with 25% of DME, volumetrically, which was called here as B75DME25. Pure biodiesel (B100), B75DME25 and D2 fuels were tested at idling and a medium loads and constant speed of 60% engine operation. CO, HC, NOx and CO2 emission were found and compared for test fuels at both idle and medium loads. In the performance tests, brake specific fuel consumption (bsfc), mass fuel consumption and thermal efficiency values were tested and compared for test fuels.Öğe The effect of n-butanol additive on low load combustion, performance and emissions of biodiesel-diesel blend in a heavy duty diesel power generator(Elsevier, 2017-04) Işık, Mehmet Zerrakki; Bayındır, Hasan; İşcan, Bahattin; Aydın, HüseyinDiesel power generators are often used under partially load conditions. Especially, under low load conditions, it is crucial to find a solution for their considerably high brake specific fuel consumption (bsfc) and exhaust output emissions. Other points are the usability of waste cooking oil and an oxygenated alternative fuel in low load conditions of diesel generator. In this point of view, 10% n-butanol and 10% biodiesel mixture was blended with 80% of ultra low sulfur diesel fuel named here as BB20 was used and comparisons have been made with 20% biodiesel/80% diesel fuel named here as B20 and ultra low sulfur diesel fuel named here as (D2). Previously, main important physical and chemical fuel properties of test fuel have been found. These fuels were tested in low load operations of a diesel engine generator in order to find out the effects of blend fuels on combustion characteristics, performance and emissions of the test engine. The test results are presented in this paper and seem to raise quite interesting points. Butanol addition to diesel and biodiesel blends can be considered as a good solution for reducing density, viscosity and thus sustainable usability of biodiesel and increase thermal efficiency and lower carbon monoxide (CO) and oxides of nitrogen (NOx) under comparatively lower load conditions in diesel power generator engines.Öğe Effects of DME addition to biodiesel on combustion, performance and emissions of a diesel engine at idle and medium loads(Makine Teknolojileri Elektronik Dergisi, 2016) Aydın, Hüseyin; İşcan, BahattinThe effects of using dimethyl ether (DME) on the combustion, performance and emission parameters of biodiesel in a diesel engine operating at idle and medium loads that was used to drive an electrical power generator were experimentally investigated. Biodiesel was produced from safflower oil. 75% of the biodiesel was blended with 25% of DME, volumetrically, which was called here as B75DME25. Pure biodiesel (B100), B75DME25 and ultra-low sulfur diesel fuel (D2) was used as test fuels. Experiments were carried out at constant loads of 60% and idle conditions. Cylinder pressure, heat release rate (HRR), cylinder pressure rise rate(CPRR) and mean gas temperature(MGT) variations of test fuels at both idle and 60% load conditions were presented here. It was found that peak values of derived pressure for all test fuel are similar while the positions of peak pressure were changed and was found earliest for D2. Similar trends were also observed for HRR, CPRR and MGT parameters. CO, HC, NOx and CO2 emission were found and compared for test fuels at both idle and medium loads. In the performance tests, brake specific fuel consumption (bsfc), mass fuel consumption and thermal efficiency values were tested and compared for test fuels.Öğe Combustion, performance, and emissions of safflower biodiesel with dimethyl ether addition in a power generator diesel engine(Taylor & Francis, 2020-04-29) Aydın, Hüseyin; Işık, Mehmet Zerrakki; İşcan, Bahattin; Topkaya, HüsnaIn this study, the effect of dimethyl ether (DME) addition to diesel (ultralow sulfur diesel fuel) and biodiesel fuels on the combustion, performance, and emissions of a diesel-powered generator was investigated. For this purpose, fuel samples of the ternary blend that volumetrically composed of 10% safflower biodiesel–10% dimethyl ether–80% ultralow sulfur diesel fuel (B10DME10), the ternary blend that volumetrically composed of 25% safflower biodiesel–25% dimethyl ether–50% ultralow sulfur diesel fuel (B25DME25), the binary blend that volumetrically composed of 25% safflower biodiesel–75% ultralow sulfur diesel fuel (B10DME10) B25, and pure safflower oil biodiesel (B100) and standard ultralow sulfur diesel (D2) were prepared. The test engine was loaded by power drawing from the generator by the usage of equivalent powered electrical heating resistances. Generally, using DME with biodiesel improved the combustion properties of biodiesel blends that can be attributed to the lower viscosity of DME. The maximum cylinder pressure was obtained for B10DME10 in general and sometimes for B25DME25. When test fuels are compared, DME blends showed higher and earlier peaks of heat release compared to diesel and biodiesel blend fuels especially. It was found that combustion is more efficient from mass fuel consumption (MFC) and brake specific fuel consumption (BSFC) values in the use of DME than biodiesel. BSEC values of using DME in the blends considerably decreased that it is the proof of improved combustion and energy efficiency. The highest average efficiency values were obtained for B25DME25 as 28.3% although it has a lower calorific value than D2 due to the considerably improved combustion properties of DME, while the average efficiency values were 23.1%, 23.3%, and 20.7% for D2, B25, and B100 fuels, respectively. Highest carbon monoxide (CO) emissions were obtained in the use of pure biodiesel, while the lowest CO emissions were obtained in the use of DME. The addition of DME is seen to increase the nitrogen oxides (NOx) and CO emissions.Öğe Seramik kaplı bir dizel motorunda biyodizel kullanımının emisyon parametrelerine etkisinin deneysel olarak araştırılması(Makine Teknolojileri Elektronik Dergisi, 2015) Aydın, Hüseyin; Sayın, Cenk; Aydın, Selman; İşcan, Bahattin; Işık, Mehmet ZerakkiBu çalışmada, dört silindirli, dört zamanlı bir dizel motor plazma sprey yöntemi ile 100 μm NiCrAl astar tabaka ve bu tabakanın üzerine 400 μm olmak üzere ZrO2 , %4 MgO ve %8 Al2O3 ana kaplama malzemesi ile kaplanmıştır. Bu motorda, seramik kaplama yönteminin yanma ve emisyon parametreleri üzerindeki etkileri araştırılmıştır. Deneysel çalışmalarda kullanılmak üzere pamuk yağı kökenli atık kızartma yağından üretilen biyodizel, dizel yakıtı ile %20 ve %50 oranında karıştırılarak sırası ile (B20) ve (B50) yakıtları oluşturulmuştur. Bu yakıtlar ile normal dizel (D2) yakıtı motor testlerinde kullanılmıştır. Deneyler kısmi yükte olmak üzere emisyon değerleri için 1200, 1500, 1800, 2100 ve 2400 dev/dk’da gerçekleştirilmiştir. Deneysel çalışma sırası ile D2, B20 ve B50 yakıtları ile önce kaplanmamış motorla egzoz emisyonları değerleri alınmıştır. Çalışma boyunca elde edilen sonuçlar ve belirgin avantajlar burada sunulmuştur