Arama Sonuçları

Listeleniyor 1 - 1 / 1
  • Öğe
    Derin transformer kodlayıcı tekniği ve farklı zaman-serisi uydu görüntüleri kullanılarak pamuk ve mısır bitki alanlarının belirlenmesi
    (Batman Üniversitesi Lisansüstü Eğitim Enstitüsü, 2022-10-11) Şimşek Bağcı, Reyhan; Acar, Emrullah; Türk, Ömer
    Türkiye orta kuşakta yer aldığından dolayı tarımsal alanda zengin bir ülkedir. Tarımsal alandaki ürünlerin kısa sürede ve doğru bir şekilde tespit edilmesi oldukça önemlidir. Uzaktan algılamadan elde edilen uydu görüntüleri sayesinde tarımsal ürünlerin tespiti gelişimi ve yıllık ürün tahmini gibi birçok konuda bilgi elde edilebilmektedir. Bu çalışmada, tarımsal ürünlere ait Sentinel-1 ve Landsat-8 uydu görüntü indeksleri ve derin mimarisi birlikte kullanılarak tarımsal ürünlerden Mısır ve Pamuk’un tespitinin yapılması amaçlanmıştır. İlk aşamada tespiti yapılması istenen tarımsal ürünlerin Sentinel-1 ve Landsat-8 uydu görüntülerini elde etmek için pilot alan belirlenmiştir. Tarım ürünleri seçilirken gelişme ve hasat zamanları yakın olan mısır ve pamuk ürünlerinin yoğunlukta olduğu bir tarım arazisi seçilmiştir. Bu pilot alandan daha sonra 100 örnek noktaya ait koordinatlar GPS yardımıyla alınmış ve bu koordinatlar Sentinel-1 ve Landsat-8 uydu görüntülerine aktarılarak yansıma değerleri elde edilmiştir. Görüntülerin yansıma değerlerini hesaplamak için tespiti yapılacak tarımsal ürünlerin gelişim ve hasat zamanlarının birbirine yakın olduğu 2016-2021 döneminin Haziran, Temmuz, Ağustos, Eylül ayları tercih edilmiştir. Çalışmada kullanılan veri seti, Google Earth Engine Code Editor (GEE-CE) yardımıyla elde edilmiş ve 2016-2021 yılları arasındaki Haziran, Temmuz, Ağustos, Eylül aylarına ait Sentinel-1 uydu görüntüsü için toplam 434 görüntü ve Landsat-8 için ise toplam 693 görüntüden oluşmaktadır. Son aşamada, elde edilen yansıma değerleri üç faklı kategoride sınıflandırılmıştır. Bunlar:1-) Sadece Sentinel-1 bantlarıyla sınıflandırma, 2-) Sadece Landsat-8’in B1-B7 bantlarıyla sınıflandırma, 3-) Hem Sentinel-1 hem de Landsat-8’in B1-B7 bantlarıyla sınıflandırma şeklindedir. Bu üç farklı yansıma değerleri, Transformer Derin Öğrenme ağı girişine verilerek, tarımsal ürünler (Mısır ve Pamuk) tespit edilmiştir. Birinci sınıflandırmada yalnız Sentilel-1 uydu görüntülerinin yansıma değerleri kullanıldığında %85 sınıflandırma doğruluğu elde edilmiştir. İkinci sınıflandırmada, Landsat-8’in B1-B7 bantlarının uydu görüntülerinin yansıma değerleri için %95 sınıflandırma doğruluğu bulunmuştur. Üçüncü sınıflandırma da ise Sentinel-1ve Landsat-8’in B1-B7 bantlarının uydu görüntüleri yansıma değerleri birlikte kullanıldığında %87,5 ortalama doğruluk değeri gözlemlenmiştir.