Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends
    (Elsevier, 2017-02-05) Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfi; Aydın, Hüseyin
    High percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene.
  • Öğe
    Experimental and numerical investigation of the effect of turbulator on heat transfer in a concentric-type heat exchanger
    (Taylor & Francis, 2015-05-21) Budak Ziyadanoğulları, Neşe; Argunhan, Zeki; Yücel, Halit Lutfi
    This article experimentally and numerically analyzes the effect of turbulators with different geometries (Type I, Type II, Type III, and Type IV) located at the inlet of the inner pipe in a concentric-type heat exchanger. Experiments were performed at parallel-flow conditions in the same and opposite directions to investigate the impact of manufactured turbulators on heat transfer and pressure drop. In the numerical study, ANSYS 12.0 Fluent code program was used, and basic protection equations were solved in the steady-state, three-dimensional, and turbulence-flow conditions. Results were obtained from numerical analysis conducted at different flow values of air (7, 8, 9, 10, 11, and 12 m3 /h). The distribution of temperature, velocity, and pressure was demonstrated as a result of numerical analyses. Experimental and numerical results were compared, and it was observed that they were in conformity with each other. When the data obtained from the analyses were examined, the highest heat transfer, pressure drop, and friction factor increase were detected to be in the Type IV turbulator.