2 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 2 / 2
Öğe An experimental investigation of the effect of thermophysical properties on time lag and decrement factor for building elements(Gazi University, 2020-06-01) Oktay, Hasan; Yumrutaş, Recep; Argunhan, ZekiThe time lag (TL) and decrement factor (DF) are essential for the heat storage capabilities of building elements, which strictly depend on the thermophysical properties of the elements. Many investigations are presented in literature arguing to find the influence of each thermophysical property on TL and DF by keeping the other properties constant. This study aims to investigate the effect of each property on TL and DF, utilizing relationships between the measurement values of the thermophysical properties of wall materials. Therefore, first, 132 new concrete wall samples were produced, and their thermophysical properties were tested. Secondly, TL and DF values for each building element are computed from the solution of the problem by Complex Finite Fourier Transform (CFFT) technique. Finally, a multivariate regression analysis has been performed, and the variations of each thermophysical property versus TL and DF are presented, and also the findings are compared with literature. The results show that each property alone (keeping the other properties constant) is not adequate to identify the thermal inertia and thermal performance of a wall element. Besides, 87.3 % decrease in thermal diffusivity corresponds to 6.03 h increase in the value of TL and 88.8 % decrease in value of DF; respectively, for W1 wall assembly.Öğe Experimental investigation of thermal performance in a concentric tube heat exchanger with wavy inner pipe(SpringerLink, 2012-06) Argunhan, Zeki; Çakmak, Gülşah; Yücel, Halit Lutfi; Yıldız, CengizIn this article, the heat transfer, friction factor, and thermal performance factor characteristics of a concentric-tube heat exchanger are examined experimentally. A wavy inner pipe is mounted in the tube with the purpose of generating swirl flow that would help to increase the heat transfer rate of the tube. The examination is performed for a Reynolds number ranging from 2700 to 8800. An empirical correlation is also formulated to match with experimental data of the Nusselt number using the Wilson plot method. In addition, to obtain the real benefits in using the swirl generator at a constant pumping power, the thermal enhancement factor is also determined. Over the range considered, the increases in the Nusselt number, friction factor, and thermal performance factor are found to be, respectively, about 113 %, 81 %, and 196 % higher than those obtained from a smooth-surface inner pipe.