3 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 3 / 3
Öğe Emissions from an engine fueled with biodiesel-kerosene blends(Taylor & Francis, 2011-01) Aydın, Hüseyin; Bayındır, Hasan; İlkılıç, CumaliBiofuels are renewable energy sources for internal combustion engines and they have low emissions. They are increasingly used as an alternative to petroleum fuels. In this work, three different fuel types, such as commercial diesel fuel (D2), 20% biodiesel and 80% diesel fuel called here as B20, and 80% biodiesel and 20% kerosene, called here as BK20, were used in a single cylinder, four stroke, direct injection compression ignition engine. Kerosene was used as an additive to approach the properties of biodiesel to D2. The effects of the blends on CO, NOx, and smoke emissions as well as on some of the performance parameter of the engine were investigated. The prepared fuel, BK20 blend, has almost the same fuel properties as conventional diesel fuel. The experimental results showed that the exhaust emissions for BK20 were fairly reduced as compared to diesel fuel as well as B20. Besides, the performance of CI engine was improved with the use of the BK20, especially in comparison to B20. Results suggest that the BK20 can be substituted to the petroleum-based diesel fuel in diesel engines.Öğe The effects of λ and ε on engine performance and exhaust emissions using ethanol-unleaded gasoline blends in an SI engine(Taylor & Francis, 2011-01) Bayındır, Hasan; Yücesu, Hüseyin Serdar; Aydın, HüseyinIn this study, the effect of relative air-fuel ratio (λ) and compression ratio (ε) on engine performance and exhaust emissions was experimentally investigated. The experiments were performed by varying ethanol-unleaded gasoline blends as E0 (100% unleaded gasoline), E10 (10% ethanol and 90% gasoline blend), E30 (30% ethanol and 70% gasoline blend), and E85 (85% ethanol and 15% gasoline blend). In experiments, first the effects of ethanol-unleaded gasoline blends on engine performance and exhaust emissions at 0.931, 1, and 1.069 λ values were clarified. Second, tests were carried out with compression ratios of 7:1, 9:1, and 11:1. The results indicated that the relative air-fuel ratio and ethanol content play an important role in reducing CO (carbon monoxide emissions) and HC (hydrocarbon) emissions. Results also showed that the engine power was slightly decreased, especially at higher engine speeds. A probable knocking phenomenon did not occur with the increase of compression ratio because of a higher octane number of ethanol-unleaded gasoline blends.Öğe An experimental study on the exhaust emissions of a partially loaded compressed ignition engine fueled with biodiesel derived from cottonseed oil(Taylor & Francis, 2010-01) Aydın, Hüseyin; Bayındır, HasanThe world energy demand is increasing rapidly due to the excessive use of the fuels but because of limited reserves, the researchers are now looking for alternative fuels. Another serious problem associated with the use of petroleum fuel is the increase in pollutants emissions. In this study, cottonseed oil methyl ester was added to diesel fuel by volume of 5% (B5), 20% (B20), and 50% (B50). Blends were used in a single cylinder, direct injection, air-cooled diesel engine at partial and full load condition. In experiments, the effects of cottonseed oil methyl ester ester-diesel fuel blend on the engine fuel consumption and exhaust emissions were investigated at 2,000 rpm of engine speed that most engines run on. At the tests, the effect of blends on fuel consumption, exhaust gases temperature, CO, NOx, SO2, and smoke opacity was clarified. The experimental results showed that cottonseed oil methyl ester can be substituted for the diesel fuel without any modifications in diesel engines.