Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Effect of matrix material and orientation angle on tensile and tribological behavior of jute reinforced composites
    (De Gruyter, 2019-07-27) Çelik, Yahya Hışman; Demir, Mehmet Emin; Kılıçkap, Erol
    Environmental friendly natural fibers have been used instead of petroleum-based synthetic fibers as reinforcements because of the depletion of oil resources, plastic waste disposal problems and the emissions generated during combustion. In these natural fibers, thermoplastic or thermoset materials are used as matrix material because of their low cost, light weight and durability. In this study, the effects of ply number (2 and 3 layer) and orientation angle of reinforcement (0/90° and ± 45°) and matrix type (thermoset and thermoplastic) on the tensile strength of jute reinforced composites were investigated. Also, the effect of the reinforcement orientation angle, sliding time (600, 1200 and 1800 s) and applied load (5, 10 and 15 N) on tribological characteristics were determined. Adhesive and abrasion wear tests were carried out at 0.15 m × s−1 sliding speed. It was observed that the matrix material and the reinforcement are very important in tensile and wear tests, while the ply number and the orientation angle only exert an influence in the tensile strength of composites. It was determined that an increase in load and sliding time is the most effective parameter on wear experiments.
  • Öğe
    Investigation of wear behavior of aged and non-aged SiC-reinforced AlSi7Mg2 metal matrix composites in dry sliding conditions
    (SpringerLink, 2020-01) Çelik, Yahya Hışman; Kılıçkap, Erol; Demir, Mehmet Emin; Kalkanlı, Ali
    Metal matrix composites (MMCs) with their splendid mechanical properties have been specifcally designed for use in felds such as aerospace and aviation. The presence of hard ceramic particles in MMC increases the hardness of the matrix product and decreases its coefcient of friction. Therefore, the wear resistance is improved. Moreover, the mechanical properties of these composite materials can be improved by applying heat treatments. In this study, AlSi7Mg2 MMCs with 15 wt% SiC reinforcement were produced by squeeze casting technique. Some of the composites were aged by heat treatment. Hardness values of aged and non-aged composites were compared. In addition, abrasive wear behaviors of these composites were investigated on pin-on-disk device, depending on the load (7, 12 and 17 N), the sliding speed (0.2, 0.3 and 0.4 m/s) and the sliding distance (700, 1000 and 1300 m). Worn surfaces were also analyzed by scanning electron microscopy (SEM). As a result of the analyses, it was determined that both the hardness values and the wear resistance were higher in the composites subjected to aging treatment. Furthermore, it was observed that the increase in the applied load led up to the weight loss. The increase in the sliding distance increased both friction coefcient and weight loss. The increase in sliding speed also made way for the friction coefcient but ensured less weight loss. When SEM images were examined, it was ascertained that deformation and tribo-surface formation had a signifcant efect on weight losses.