2 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 2 / 2
Öğe EMG sinyallerinin aşırı ögrenme makinesi ile sınıflandırılması(IEEE, 2013-06-13) Ertuğrul, Ömer Faruk; Tağluk, Mehmet Emin; Kaya, Yılmaz; Tekin, Ramazan; Batman Üniversitesi Mühendislik - Mimarlık Fakültesi Bilgisayar Mühendisliği BölümüFrom disease detection to action assessment EMG signals are used variety of field. Miscellaneous studies have been conducted toward analysis of EMG signals. In this study some statistical features of signal were derived, the best evocative features were selected via Linear Discriminant Analysis (LDA) and feature vectors were constructed. This analytic feature vectors were classified through Extreme Learning Machine (ELM). 8 channel EMG signals recorded from 10 normal and 10 aggressive actions were used as an example. By cross-comparison of the obtained results to the ones obtained via various feature identifying methods (AR coefficients, wavelet energy and entropy) and classification methods (NB, SVM, LR, ANN, PART, Jrip, J48 and LMT) the success of the proposed method was determined.Öğe İki kanal yüzey EMG işareti ile el aç/kapa ve el parmaklarının sınıflandırılması(IEEE, 2017-11-02) Sezgin, Necmettin; Ertuğrul, Ömer Faruk; Tekin, Ramazan; Tağluk, Mehmet EminIn this study, two-channel surface electromyogram (sEMG) signals were used to classify hand open/close with fingers. The bispectrum analysis of the sEMG signal recorded with surface electrodes near the region of the muscle bundles on the front and back of the forearm was classified by extreme learning machines (ELM) based on phase matches in the EMG signal. EMG signals belonging to 17 persons, 8 males and 9 females, with an average age of 24 were used in the study. The fingers were classified using ELM algorithm with 94.60% accuracy in average. From the information obtained through this study, it seems possible to control finger movements and hand opening/closing by using muscle activities of the forearm which we hope to lead to control of intelligent prosthesis hands with high degree of freedom.