Arama Sonuçları

Listeleniyor 1 - 3 / 3
  • Öğe
    Milling Inconel 718 workpiece with cryogenically treated and untreated cutting tools
    (SpringerLink, 2021-07-17) Gürbüz, Hüseyin; Baday, Şehmus
    Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces, and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness, and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02- 0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration, and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration, and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated. Also, in this study, the statistical validity of the experimental values was tested with the help of secondorder equations and analyses of variance (ANOVA). R2 values obtained as 99.14%, 99.76%, and 97.98% for vibration, surface roughness, and feed force values were modeled statistically with the help of second-order equations, respectively.
  • Öğe
    Effect of MQL flow rate on machinability of AISI 4140 steel
    (Taylor & Francis, 2020-06-27) Gürbüz, Hüseyin; Gönülaçar, Yunus Emre; Baday, Şehmus
    Many studies were performed about the influence of minimum quantity lubrication (MQL) technique on cutting performance in the literature, but there is no paper examining the effect of different MQL flow rates and cutting parameters on machinability of AISI 4140 material as a whole. In this study, the effects of different MQL flow rates and cutting parameters on surface roughness, main cutting force and cutting tool flank wear (VB), with great importance among the machinability criteria, and forming as a result of the machining of AISI 4140, were revealed. At the end of the experiments, it was determined that rise of flow rate affected main cutting forces positively to a certain extent; yet, it exhibited no significant effect on surface roughness, but reduced VB. Also, it was observed that both main cutting force and surface roughness increased with the increase of feed, while generally decreased with the increase of cutting speed. It was seen that flank wear was positively affected by the increase in flow rate; and this decreased with the increase in flow rate. R2 values obtained as 99.8% and 99.9% for main cutting forces and surface roughness values modeled statistically with the help of quadratic equations, respectively.
  • Öğe
    Investigation of effects of cutting insert rake face forms on surface integrity
    (SpringerLink, 2017-06) Gürbüz, Hüseyin; Şeker, Ulvi; Kafkas, Fırat
    In this study, the effects of cutting insert rake face forms and cutting parameters on the surface integrity in machining of AISI 316 L steel were investigated experimentally. The cutting forces occur during chip removal, surface roughness values on the machined surfaces with residual stresses on machined workpiece were measured, and metallurgical structure (microhardness and microstructural variations) of the surface layers formed as a result of machining were evaluated. The surface integrity was evaluated in terms of surface roughness, residual stress, microhardness, and microstructure analysis. In experiments, the best surface integrity results were obtained by cutting tools having QM form, and the worst surface integrity results were obtained by cutting tools having MR form. Under all these cutting conditions, it was observed that the surface integrity worsened when depth of cut and cutting feed were increased; however, the surface integrity improved when cutting speed was increased. In terms of cutting parameters, the best surface integrity was obtained with cutting speed 200 m/min, cutting feed 0.1 mm/rev, and depth of cut 1.25 mm; on the other hand, the worst surface integrity was obtained with cutting speed 125 m/min, cutting feed 0.3 mm/rev, and depth of cut 2.5 mm.