7 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 7 / 7
Öğe Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends(Elsevier, 2017-02-05) Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfi; Aydın, HüseyinHigh percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene.Öğe Analysis of ethanol RCCI application with safflower biodiesel blends in a high load diesel power generator(Elsevier, 2016-11-15) Işık, Mehmet Zerrakki; Aydın, HüseyinThe effects of RCCI in a diesel power generator by using safflower oil biodiesel-diesel blends were experimentally investigated. Ethanol was premixed as PFI by rates of 30% and 50% of total mass fuel consumption of the engine. Tests were conducted at constant engine speed of 1500 rpm and fixed load 10.8 kW engine power. The purpose of blending biodiesel with diesel is to increase the fuel reactivity of primary fuel in order to easily initiate the combustion. Therefore, test fuels were prepared by blending 10% of the biodiesel with 90% of diesel, 20% of the biodiesel with 80% of diesel and 50% of the biodiesel with 50% of diesel. The most important combustion, performance and emission indicators of the engine under various conditions have been deeply investigated and results have been presented. The ethanol RCCI operation increased peak pressure values especially with using of B50 as high reactivity fuel while combustion was retarded for both RCCI modes. Overall, many indicators of the combustion was improved. Performance parameters were developed. Especially, bsfc was considerably increased. NOx, emissions were considerably decreased while CO and HC emissions were a bit increased.Öğe Evaluation of combustion, performance and emission indicators of canola oil-kerosene blends in a power generator diesel engine(Elsevier, 2017-03-05) Aydın, Hüseyin; Işık, Mehmet Zerrakki; Bayındır, HasanDirect use of vegetable oils as fuel in diesel engines leads to some important engine operational problems that need to be solved in order to make their usability possible. Canola oil was blended with kerosene by percentages of 90% canola oil-10% kerosene (C90&K10), 75% canola oil-25% kerosene (C75&K25) and 50% canola oil-50% kerosene (C50&K50). These blend fuels were initially analyzed by means of physicochemical fuel properties and comparisons were made with standard diesel fuel. Blend fuels and standard diesel fuel (D2) were than tested in a diesel power generator with 4 cylinders in order to investigate the combustion, performance and emission characteristics of the blend fuels and compare them with the petroleum based diesel fuel (D2). All experiments were carried out at specified output power values of 3.6, 7.2 and 10.8 kW and 1500 rpm constants speed. The combustion characteristics of canola oil kerosene blends have found be quite similar to those of D2. Mass fuel consumption and brake specific fuel consumption (bsfc) were slightly increased for blend fuels. Nitrogen oxide (NOx) emissions and exhaust smoke opacities were considerably reduced for blends while carbon monoxides (CO) and unburned hydrocarbon (HC) emissions were a bit increased. It can be concluded that kerosene blended vegetable oils can be used as fuel with improved combustion and performance characteristics compared to those of pure vegetable oils.Öğe The effect of n-butanol additive on low load combustion, performance and emissions of biodiesel-diesel blend in a heavy duty diesel power generator(Elsevier, 2017-04) Işık, Mehmet Zerrakki; Bayındır, Hasan; İşcan, Bahattin; Aydın, HüseyinDiesel power generators are often used under partially load conditions. Especially, under low load conditions, it is crucial to find a solution for their considerably high brake specific fuel consumption (bsfc) and exhaust output emissions. Other points are the usability of waste cooking oil and an oxygenated alternative fuel in low load conditions of diesel generator. In this point of view, 10% n-butanol and 10% biodiesel mixture was blended with 80% of ultra low sulfur diesel fuel named here as BB20 was used and comparisons have been made with 20% biodiesel/80% diesel fuel named here as B20 and ultra low sulfur diesel fuel named here as (D2). Previously, main important physical and chemical fuel properties of test fuel have been found. These fuels were tested in low load operations of a diesel engine generator in order to find out the effects of blend fuels on combustion characteristics, performance and emissions of the test engine. The test results are presented in this paper and seem to raise quite interesting points. Butanol addition to diesel and biodiesel blends can be considered as a good solution for reducing density, viscosity and thus sustainable usability of biodiesel and increase thermal efficiency and lower carbon monoxide (CO) and oxides of nitrogen (NOx) under comparatively lower load conditions in diesel power generator engines.Öğe Sample of Batman in determination of urban solid waste management and recycling potential(International Journal of Physical Sciences, 2012-11-16) Adin, Hamit; Oktay, Hasan; Topkaya, Tolga; Işık, Mehmet Zerrakki; Budak Ziyadanoğulları, NeşeThe collection, transport, treatment, and disposal of solid wastes, particularly wastes generated in medium and large urban centres, have become a relatively difficult problem to solve for those responsible for their management. However, recycling-related activities bring waste reduction, prevention of waste of raw materials and less environmental damage as well as providing an economic benefit to the countries. In this paper, a case study of a developing country has been examined dealing with serious pollution problems due to the ineffective management of the large solid waste generated in the city of Batman in Turkey. The aim of this paper is to estimate the quantity of waste produced that requires collection and the different waste constituents, to analyze the current practices of SWM, to propose an environmentally sound and economically feasible integrated management system for dealing with solid waste. Results showed that the average generation rate of MSW was 0.75 kg/capita/day in Batman and also, it has been anticipated that the wastes could be disposed by using modern methods instead of irregular storageÖğe Comparative experimental investigation on the effects of heavy alcohols- safflower biodiesel blends on combustion, performance and emissions in a power generator diesel engine(Elsevier, 2021-02-05) Işık, Mehmet ZerrakkiThe experimental works carried out in this article evaluates the potential of using heavy alcohol and safflower biodiesel as the blended fuel mixtures without making any modifications in the tests diesel engine. For this purpose, volumetrically 20% of Propanol, Pentanol, Butanol, and Octanol were blended with safflower biodiesel fuel and they were named as PR20, PE20, BU20, and OC20, respectively. The performance, combustion, and emission data were found out at the same conditions of constant engine speed and various loads and compared with pure biodiesel (B100) and diesel fuel(ULSD). In the experiments, a four-cylinder, water-cooled diesel engine that was loaded by an electrical power generator was used for the tests. The addition of alcohol causes an increase in fuel consumption due to a decrease in lower thermal performance. The use of heavy alcohols in diesel engine in specific quantities by mixing with biodiesel significantly increases engine brake thermal efficiency. Negative effects of low cetane number and high latent heat of vaporization that may decrease ignition delay and decrease cylinder pressure while increase peak heat release was considered to be compensated by the better mixing properties and atomization of alcohol blended biodiesel thus eventually improve the combustion. Alcohol addition to biodiesel fuel can be accepted as a useful application to increase brake thermal efficiency and reduce nitrogen oxide (NOx), carbon monoxide (CO), and hydrocarbon (HC) emissions by reducing the density and viscosity.Öğe Combustion, performance, and emissions of safflower biodiesel with dimethyl ether addition in a power generator diesel engine(Taylor & Francis, 2020-04-29) Aydın, Hüseyin; Işık, Mehmet Zerrakki; İşcan, Bahattin; Topkaya, HüsnaIn this study, the effect of dimethyl ether (DME) addition to diesel (ultralow sulfur diesel fuel) and biodiesel fuels on the combustion, performance, and emissions of a diesel-powered generator was investigated. For this purpose, fuel samples of the ternary blend that volumetrically composed of 10% safflower biodiesel–10% dimethyl ether–80% ultralow sulfur diesel fuel (B10DME10), the ternary blend that volumetrically composed of 25% safflower biodiesel–25% dimethyl ether–50% ultralow sulfur diesel fuel (B25DME25), the binary blend that volumetrically composed of 25% safflower biodiesel–75% ultralow sulfur diesel fuel (B10DME10) B25, and pure safflower oil biodiesel (B100) and standard ultralow sulfur diesel (D2) were prepared. The test engine was loaded by power drawing from the generator by the usage of equivalent powered electrical heating resistances. Generally, using DME with biodiesel improved the combustion properties of biodiesel blends that can be attributed to the lower viscosity of DME. The maximum cylinder pressure was obtained for B10DME10 in general and sometimes for B25DME25. When test fuels are compared, DME blends showed higher and earlier peaks of heat release compared to diesel and biodiesel blend fuels especially. It was found that combustion is more efficient from mass fuel consumption (MFC) and brake specific fuel consumption (BSFC) values in the use of DME than biodiesel. BSEC values of using DME in the blends considerably decreased that it is the proof of improved combustion and energy efficiency. The highest average efficiency values were obtained for B25DME25 as 28.3% although it has a lower calorific value than D2 due to the considerably improved combustion properties of DME, while the average efficiency values were 23.1%, 23.3%, and 20.7% for D2, B25, and B100 fuels, respectively. Highest carbon monoxide (CO) emissions were obtained in the use of pure biodiesel, while the lowest CO emissions were obtained in the use of DME. The addition of DME is seen to increase the nitrogen oxides (NOx) and CO emissions.