Arama Sonuçları

Listeleniyor 1 - 6 / 6
  • Öğe
    Hardness and wear behaviours of al matrix composites and hybrid composites reinforced with B 4 C and SiC
    (Springer Nature, 2019-01-15) Çelik, Yahya Hışman; Kılıçkap, Erol
    The conversion into the desired shape of the metal powders using Powder Metallurgy (PM) method enables economically mass productions. This case allows producing parts with complex and high dimensional accuracy with no machining. In this study the composites and hybrid composites with Al matrix were produced using PM method with different ratios B4C and SiC. Microhardness and wear experiments of the produced composites were investigated. Wear experiments were performed at a constant speed of 0.5 m/s, application loads of 5, 10 and 15 N and sliding distances of 250, 500, and 750 m. Then, SEM images of composites and hybrid composites were captured. The increase of the reinforcement ratio in the composites contributed to the increase of the hardness. The highest hardness value was computed as 58.7 HV from 16% B4C reinforced composite. In addition, the increase in the reinforcement ratio contributed to the increase of the wear resistance. The increase in the load and sliding distance also increased the wear. The minimum weight loss was calculated as 18 mg from 5 N load, 250 m sliding distance and 16% SiC reinforced composite.
  • Öğe
    Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools
    (Springer Nature, 2017-06-01) Çelik, Yahya Hışman; Kılıçkap, Erol; Güney, Musa
    There are some problems in the machining of titanium alloys with excellent properties such as high strength, good corrosion resistance, long service life and low weight. The leading problem appears to be the fast tool wear and the bad machining surface. Therefore, in this study, it was investigated whether cutting parameters have effect on tool wear and surface roughness by turning under dry cutting condition of Ti-6Al-4V alloy with excellent properties. CVD (TiCN + Al2O3 + TiN) and PVD (TiAlN) coated WC tools were used in the experiments. Then the Ti-6Al-4V alloy turned with the combinations of the different cutting speed, feed rate, cutting long and depth of cut. We observed that the tools wear in both CVD and PVD coated WC tools increased with increasing the cutting speed, feed rate, depth of cut and cutting length. However, while tools wear increased with increasing cutting speed, the surface roughness reduced to an optimum level. Especially, the surface roughness was worsened above the optimum level changing with increasing the feed rate, cutting length and depth of cut. The tool wear with PVD coated WC tools was observed to be less than the CVD coated WC tools. However, the values of the surface roughness obtained with PVD coated WC tools with increase in depth of cut, feed rate and cutting length has given us higher values when compared to CVD coated WC tools.
  • Öğe
    Estimate of cutting forces and surface roughness in end milling of glass fiber reinforced plastic composites using fuzzy logic system
    (Walter de Gruyter, 2014-06-01) Çelik, Yahya Hışman; Kılıçkap, Erol; Yardımeden, Ahmet
    Milling glass fiber reinforced plastic (GFRP) composite materials are problematic, owing to, e.g., nonhomogeneous and anisotropic properties and effects of plastic deformation. To reduce these problems, the effects of cutting speed, feed rate, and the number of flutes on surface roughness and of thrust forces occurring during the milling of GFRP composite materials were investigated by both experimental and fuzzy logic models. Experiments were performed at 30 m/min, 60 m/min, and 90 m/min cutting speeds, at 0.1 mm/rev, 0.15 mm/rev, and 0.2 mm/rev feed rates and 10 mm diameters in a cemented carbide end mill, which has two, three, and four flutes without cutting fluids. The values obtained from experiments were defined by a fuzzy logic model. A fuzzy logic model was employed to estimate the surface roughness and thrust forces for different cutting parameters. As a result of both the experimental study and the fuzzy logic model, while the minimum thrust force was obtained at low cutting speeds, and feed rates and a high number of flutes end mill, the best surface quality was obtained at low feed rates, high cutting speed, and number of flutes end mill.
  • Öğe
    Evaluation of drilling performances of nanocomposites reinforced with graphene and graphene oxide
    (Springer Nature, 2018-09-16) Çelik, Yahya Hışman; Kılıçkap, Erol; Koçyiğit, Nihayet
    The use of graphene (G) and graphene oxide (GO) reinforced nanocomposites have a great importance since G and GO improve the interface conditions of composite materials. However, the effects of G and GO on some mechanical properties and machinability in nanocomposites are still a research topic. In this study, G was converted to GO by Hummers’ method. G and GO nanoparticles were added to epoxy at different ratios and the tensile strengths of nanocomposites were determined. By taking into account, the reinforcement ratio of nanocomposites having the highest tensile strength, epoxy with G and GO, and unreinforced epoxy were added to carbon fiber (CF) fabric by hand lay-up. Thus, fabrication of the carbon fiber-reinforced plastic (CFRP) composite, and the G/CFRP and GO/CFRP nanocomposites was carried out. The effects of the G and GO on the fabricated nanocomposites, and the effect of different drilling parameters (cutting speed and feed rate) on the cutting force, cutting torque, temperature, and delamination factor were investigated. In the drilling of these composites, drills with the different bit point angles and the diameter of 5 mm were used. As a result, it was observed that GO was successfully synthesized, and G and GO positively affected the tensile strength, and GO exhibited a more effective feature than G on the tensile strength. It was also seen that the increase of the cutting speed, feed rate, bit point angle caused the increase in the cutting forces, cutting torque, and delaminations.
  • Öğe
    An experimental study on milling of natural fiber (jute)- reinforced polymer composites
    (SAGE, 2019-01-31) Çelik, Yahya Hışman; Kılıçkap, Erol; Kılıçkap, Ali İmran
    The interest in materials having natural, environmentally friendly, renewable and low density/cost is increasing day by day due to sanctions imposed to reduce the emission rates, especially the Kyoto Protocol. In recent years, the use of environmentally friendly composites by using natural fibers such as flax, jute and sisal has increased in engineering applications. Milling operation has frequently been an important method of machining which can achieve the desired dimensions and tolerances for the plate-shaped parts. In this study, the effects of cutting parameters such as cutting speed and feed rate on cutting force, delamination factor and surface roughness in end milling of jute fiber-reinforced polymer composite plates with different orientation angle (0°/90°, 30°/−60° and ±45°) were examined by using the cemented carbide (WC) end mills (two, three and four number of flutes). Cutting force, deformation factor and surface roughness were found to be influenced by the feed rate and cutting speeds. In addition, increasing the number of the flutes of the cutting tools reduced the cutting force, delamination factor and surface roughness.
  • Öğe
    Evaluation of drilling performances of nanocomposites reinforced with graphene and graphene oxide
    (Springer Nature, 2019-02-25) Çelik, Yahya Hışman; Kılıçkap, Erol; Koçyiğit, Nihayet
    The use of graphene (G) and graphene oxide (GO) reinforced nanocomposites have a great importance since G and GO improve the interface conditions of composite materials. However, the effects of G and GO on some mechanical properties and machinability in nanocomposites are still a research topic. In this study, G was converted to GO by Hummers’ method. G and GO nanoparticles were added to epoxy at different ratios and the tensile strengths of nanocomposites were determined. By taking into account, the reinforcement ratio of nanocomposites having the highest tensile strength, epoxy with G and GO, and unreinforced epoxy were added to carbon fiber (CF) fabric by hand lay-up. Thus, fabrication of the carbon fiber-reinforced plastic (CFRP) composite, and the G/CFRP and GO/CFRP nanocomposites was carried out. The effects of the G and GO on the fabricated nanocomposites, and the effect of different drilling parameters (cutting speed and feed rate) on the cutting force, cutting torque, temperature, and delamination factor were investigated. In the drilling of these composites, drills with the different bit point angles and the diameter of 5 mm were used. As a result, it was observed that GO was successfully synthesized, and G and GO positively affected the tensile strength, and GO exhibited a more effective feature than G on the tensile strength. It was also seen that the increase of the cutting speed, feed rate, bit point angle caused the increase in the cutting forces, cutting torque, and delaminations.