6 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 6 / 6
Öğe Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools(Springer Nature, 2017-06-01) Çelik, Yahya Hışman; Kılıçkap, Erol; Güney, MusaThere are some problems in the machining of titanium alloys with excellent properties such as high strength, good corrosion resistance, long service life and low weight. The leading problem appears to be the fast tool wear and the bad machining surface. Therefore, in this study, it was investigated whether cutting parameters have effect on tool wear and surface roughness by turning under dry cutting condition of Ti-6Al-4V alloy with excellent properties. CVD (TiCN + Al2O3 + TiN) and PVD (TiAlN) coated WC tools were used in the experiments. Then the Ti-6Al-4V alloy turned with the combinations of the different cutting speed, feed rate, cutting long and depth of cut. We observed that the tools wear in both CVD and PVD coated WC tools increased with increasing the cutting speed, feed rate, depth of cut and cutting length. However, while tools wear increased with increasing cutting speed, the surface roughness reduced to an optimum level. Especially, the surface roughness was worsened above the optimum level changing with increasing the feed rate, cutting length and depth of cut. The tool wear with PVD coated WC tools was observed to be less than the CVD coated WC tools. However, the values of the surface roughness obtained with PVD coated WC tools with increase in depth of cut, feed rate and cutting length has given us higher values when compared to CVD coated WC tools.Öğe Mathematical modelling and optimization of cutting force, tool wear and surface roughness by using artificial neural network and response surface methodology in milling of Ti-6242S(Applied Sciences-Basel, 2017-10-15) Çelik, Yahya Hışman; Kılıçkap, Erol; Yardımeden, AhmetIn this paper, an experimental study was conducted to determine the effect of different cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC) end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial Neural Network (ANN) and Response Surface Methodology (RSM). ANN trained network using Levenberg-Marquardt (LM) and weights were trained. On the other hand, the mathematical models in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM was found to be very close to the data obtained from experimental studies. The lowest cutting force and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut. The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.Öğe Investigation of experimental study of end milling of CFRP composite(De Gruyter, 2013-12-12) Çelik, Yahya Hışman; Kılıçkap, Erol; Yardımeden, AhmetCarbon fiber-reinforced plastic (CFRP) composites are materials that are difficult to machine due to the anisotropic and heterogeneous properties of the material and poor surface quality, which can be seen during the machining process. The machining of these materials causes delamination and surface roughness owing to excessive cutting forces. This causes the material not to be used. The reduction of damage and surface roughness is an important aspect for product quality. Therefore, the experimental study carried out on milling of CFRP composite material is of great importance. End milling tests were performed at CNC milling vertical machining center. In the experiments, parameters considered for the end milling of CFRP were cutting speed, feed rate, and flute number of end mill. The results showed that damage, surface roughness, and cutting forces were affected by cutting parameters and flute number of end mill. The best machining conditions were achieved at low feed rate and four-flute end mill.Öğe Estimate of cutting forces and surface roughness in end milling of glass fiber reinforced plastic composites using fuzzy logic system(Walter de Gruyter, 2014-06-01) Çelik, Yahya Hışman; Kılıçkap, Erol; Yardımeden, AhmetMilling glass fiber reinforced plastic (GFRP) composite materials are problematic, owing to, e.g., nonhomogeneous and anisotropic properties and effects of plastic deformation. To reduce these problems, the effects of cutting speed, feed rate, and the number of flutes on surface roughness and of thrust forces occurring during the milling of GFRP composite materials were investigated by both experimental and fuzzy logic models. Experiments were performed at 30 m/min, 60 m/min, and 90 m/min cutting speeds, at 0.1 mm/rev, 0.15 mm/rev, and 0.2 mm/rev feed rates and 10 mm diameters in a cemented carbide end mill, which has two, three, and four flutes without cutting fluids. The values obtained from experiments were defined by a fuzzy logic model. A fuzzy logic model was employed to estimate the surface roughness and thrust forces for different cutting parameters. As a result of both the experimental study and the fuzzy logic model, while the minimum thrust force was obtained at low cutting speeds, and feed rates and a high number of flutes end mill, the best surface quality was obtained at low feed rates, high cutting speed, and number of flutes end mill.Öğe Effect of matrix material and orientation angle on tensile and tribological behavior of jute reinforced composites(De Gruyter, 2019-07-27) Çelik, Yahya Hışman; Demir, Mehmet Emin; Kılıçkap, ErolEnvironmental friendly natural fibers have been used instead of petroleum-based synthetic fibers as reinforcements because of the depletion of oil resources, plastic waste disposal problems and the emissions generated during combustion. In these natural fibers, thermoplastic or thermoset materials are used as matrix material because of their low cost, light weight and durability. In this study, the effects of ply number (2 and 3 layer) and orientation angle of reinforcement (0/90° and ± 45°) and matrix type (thermoset and thermoplastic) on the tensile strength of jute reinforced composites were investigated. Also, the effect of the reinforcement orientation angle, sliding time (600, 1200 and 1800 s) and applied load (5, 10 and 15 N) on tribological characteristics were determined. Adhesive and abrasion wear tests were carried out at 0.15 m × s−1 sliding speed. It was observed that the matrix material and the reinforcement are very important in tensile and wear tests, while the ply number and the orientation angle only exert an influence in the tensile strength of composites. It was determined that an increase in load and sliding time is the most effective parameter on wear experiments.Öğe An experimental study on milling of natural fiber (jute)- reinforced polymer composites(SAGE, 2019-01-31) Çelik, Yahya Hışman; Kılıçkap, Erol; Kılıçkap, Ali İmranThe interest in materials having natural, environmentally friendly, renewable and low density/cost is increasing day by day due to sanctions imposed to reduce the emission rates, especially the Kyoto Protocol. In recent years, the use of environmentally friendly composites by using natural fibers such as flax, jute and sisal has increased in engineering applications. Milling operation has frequently been an important method of machining which can achieve the desired dimensions and tolerances for the plate-shaped parts. In this study, the effects of cutting parameters such as cutting speed and feed rate on cutting force, delamination factor and surface roughness in end milling of jute fiber-reinforced polymer composite plates with different orientation angle (0°/90°, 30°/−60° and ±45°) were examined by using the cemented carbide (WC) end mills (two, three and four number of flutes). Cutting force, deformation factor and surface roughness were found to be influenced by the feed rate and cutting speeds. In addition, increasing the number of the flutes of the cutting tools reduced the cutting force, delamination factor and surface roughness.