6 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 6 / 6
Öğe On Arf numerical semigroups(SCIK Publishing Corporation, 2016) Süer, Meral; İlhan, SedatIn this study, we obtain an Arf semigroup by means of a sequence. We also establish some results on the Arf semigroupÖğe The results on some Arf numerical semigroups with multiplicity 8(İksad Publications, 2019-12-16) Süer, Meral; İlhan, Sedat; Karakaş, İbrahimIn this paper, we will give some results about Frobenius number, Apery set, type, genus and determine number of Arf numerical semigroup S such that m S() 8 = and CS C ( ) 0, 2,3, 4,5,6,7 ( mod8).Öğe On a family of saturated numerical semigroups with multiplicity four(TÜBİTAK, 2017-01-16) Süer, Meral; İlhan, SedatIn this study, we will give some results on Arf numerical semigroups of multiplicity four generated by {4, k, k + 1, k + 2} where k is an integer not less than 5 and k ≡ 1(mod 4).Öğe Some results on Arf numerical semigroups with multiplicity 8(Harran Üniversitesi, 2017-05) Süer, Meral; İlhan, SedatA numerical semigroup is a subset of the set of nonnegative integers (denoted here by ¥ ) closed under addition, containing the zero element and with finite complement in ¥ . Note also that up to isomorphism the set of numerical semigroups classify the set of all submonoids of ( , ) ¥ + . Let S be submonoid of ¥ , the condition of having finite complement in ¥ is equivalent to saying that the greatest common divisor (gcd for short) of its elements is one. Those positive integers which do not belong to S are called gaps of S . The number of gaps of S is called the genus of S and it is denoted by G S( ) . The largest gaps of S is F S( ) if S is different from ¥ . m S s S s ( ) min : 0 = Î > { } are called multiplicity of S , respectively. Also, n S Card F S S ( ) 0,1,2,..., ( ) = Ç ({ } ) is called the number determine of S . If a Î ¥ and a S Ï , then a is called gap of S . We denote the set of gaps of S , by H S( ) , i.e, H S S ( ) \ = ¥ .The G S Card H S ( ) ( ( )) = is called the genus of S . Also, It known that G S F S n S ( ) ( ) 1 ( ) = + - . A numerical semigroup S is called Arf if x y z S + - Î for all x y z S , , Î , where x y z ³ ³ . This definition was first given by C. Arf in 1949. In the study, we intend to examine the Arf numerical semigroup with multiplicity eight and fixed conductor. We will also able to compute the notable elements and special sets of these numerical semigroups.Öğe On a class of Arf numerical semigroups(Fırat Üniversitesi, 2016-05) Süer, Meral; İlhan, SedatA subset S of N is called a numerical semigroup if S is closed under addition and S has element 0 and N\S is finite where N denotes the set of nonnegative integers. In this study, we are interested two subclass of maximal embedding dimension numerical semigroups, which are those semigroups having the Arf property and saturated numerical semigroups. We introduce a new class of both Arf property and saturated numerical semigroups with multiplicity four. We consider numerical semigroups minimally generated by {4, k, k+1, k+2}. Where k is an integer greater than or equal to 5 and k is congruent to 1 (modulo 4). We prove that all these semigroups are both numerical semigroups with Arf property and saturated numerical semigroup. There is not any formulas to calculate invariants as Frobenius number, gaps, n(S) and genus of S even for numerical semigroup with multiplicity four. But this invariants have been calculated by imposing some conditions on elements of the numerical semigroup S. We calculate the Frobenius number, the genus and the set of gaps of each of these numerical semigroups. Additionally, we give a relation between the set of pseudo- Frobenius numbers and the set of all fundamental gaps of these numerical semigroups.Öğe On the one half of an Arf numerical semigroup(SCIK Publishing Corporation, 2015) Süer, Meral; İlhan, SedatIn this study, we will characterize the Arf numerical semigroup that is computed in a quotient of an Arf numerical semigroup by an positive integer. We will also obtain the one half of this special Arf numerical semigroup and give some results about this numerical semigroup.