Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Örüntü tanımada hopfield ağının kullanılması
    (Batman Üniversitesi, 2012) Sezgin, Necmettin; Tekin, Ramazan; Çalışkan, Abidin
    Bilgisayar teknolojisinin hızlı bir şekilde gelişmesi akıllı sistemlerin insan yaşamının birçok alanında kullanılmasını artırmıştır. Bu alanlardan birisi de alfa nümerik karakterlerin otomatik olarak doğru bir şekilde tanınması, istenen bir objenin tespit edilmesi ve seçilmesidir. Hopfield ağı, gürültülü veya bozuk olan desenin kısmi ipuçlarından ve önceden depolanmış desenlerden yararlanarak bu deseni düzeltebilen karakteristik bir yapıya sahiptir. Bu süreçte ağ, girdi örüntüsünde yapılan her ufak değişimin ardından örüntü enerjisini yeniden hesaplayarak morfolojik dönüşümünün kontrolünü sağlar ve bu örüntünün daha önce öğrendiği başka bir örüntüye yakınsamasını zorlar. Bu benzetişim işlemi, enerjideki değişkenlik durağan olana dek sürer. Nesnelerin otomatik olarak tanınması, seçilmesi ve işlenmesi gibi işlemden sorumlu bir ağın kullanıldığı akıllı sistemler özellikle robotik alanında önemli bir yere sahiptir. Bu çalışmada Hopfield ağ yapısını kullanarak örüntü tanıyan bir sistem geliştirilmeye çalışılmıştır.
  • Öğe
    Gabor dalgacık dönüşümü tabanlı yapay sinir ağı modeli ile zambak yaprağı imgelerinde pas hastalıklarının tespiti
    (Batman Üniversitesi, 2012-06-01) Acar, Emrullah; Çalışkan, Abidin; Sezgin, Necmettin
    Bitkilerdeki hastalıklar, hasadı ve dolayısıyla verimi etkilemektedir. Hastalıkların önceden kestirilmesi, çiftçilerin alacağı önlemler ile verimi artıracaktır. Verimi etkileyen önemli hastalıkların başında pas hastalığı gelmektedir. Bu çalışmada bitki örneği olarak, zirai uygulamalarla ilgili farklı zirai sitelerden bir uzman yardımıyla elde edilmiş zambak çiçeği yaprak imgeleri kullanılmış olup, Gabor dalgacık dönüşümü tabanlı yapay sinir ağı modeli ile pas hastalığını tespit eden bir sistem tasarlanmıştır. İlk aşamada, imgelere ilişkin Gabor dalgacık dönüşümü kullanılarak her bir sayısal imgeden ayrı bir özellik matrisi elde edilip, matrislerin ortalama, standart sapma ve entropi gibi istatistiksel değerleri hesaplanmıştır. Bu değerler öznitelik vektörüne eklenerek, her bir imge için bir öznitelik vektörü oluşturulmuştur. İkinci aşamada, Gabor dalgacık dönüşümü tabanlı öznitelik vektörleri yapay sinir ağı modelinin girişine verilerek sınıflandırma için performansı en iyi ağ yapısı belirlenmeye çalışılmıştır. Zambak çiçeği yaprak imgeleri iki (1-sağlıklı, 2- hastalıklı) grupta sınıflandırılmış olup sınıflandırma çalışmaları sonucunda, en iyi ortalama performansa %80,00 başarı ile yapay sinir ağı modelinin (3-25-1) ağ yapısında ulaştığı gözlemlenmiştir.