2 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 2 / 2
Öğe Effect of welding parameters on microstructure and mechanical properties of AA7075/AA5182 alloys joined by TIG and MIG welding methods(SpringerLink, 2020) Çelik, Yahya Hışman; Temiz, Şemsettin; Çetkin, EdipIn this study, V and X welding grooves were opened to the forehead positions of the AA5182 and AA7075 aluminum alloy pairs and these alloy pairs were joined with tungsten inert gas (TIG) and metal inert gas (MIG) methods. Three diferent welding currents were used in joints. Gas fow rates of 12 and 17 l/min at the TIG welding and wire feed rates of 38 and 45 cm/min at MIG welding were selected. The efect of the welding grooves, welding current, gas fow rate and wire feed rate on microstructure and mechanical properties were investigated. Microstructures of welding zones were analyzed by an optical microscope and a scanning electron microscope (SEM). Vickers hardness of these zones was also measured. In addition, tensile and fatigue tests were carried out. Fracture mechanisms of failed specimens were conducted after the tensile tests were examined by using SEM. The highest hardness, tensile and fatigue strengths were obtained from the alloy pairs joined by opening X welding groove with TIG welding method. These values were 89 HV, 262.87 MPa, and 131.5 MPa, respectively. Similarly, the lowest tensile and fatigue strengths were obtained from the alloy pairs joined by opening V welding groove in the TIG welding method. These values were, respectively, 94.48 MPa and 19.1 MPa. However, the minimum hardness value was measured as 58 HV from the alloy pairs joined by opening V welding groove with MIG welding methods. In addition, it was observed on the fracture surfaces that the grain distributions and mechanisms difered depending on the welding methods, welding groove, and welding parameters.Öğe Experimental and numerical strength analysis of double lap joints subjected to tensile loads(Materials Testing, 2014) Adin, Hamit; Temiz, ŞemsettinIn this paper the mechanical behaviour of double lap joints (DLJs) bonded with adhesive was analyzed. The stress-strain behaviour was investigated along the overlap length and adherend thickness in DLJs subjected to tensile loads. The stress analyses were performed by finite element method (FEM). The FEM calculations were performed using ANSYS (12.0.1). Experimental results were compared with the FEM results and were found to be quite reasonable. The results show that the failure loads are increased with an increase in adherend thickness. The stress-strain behaviour changes depending on adherend thickness and overlap length. Both FEM stress analyses and experimental results revealed that failure occurred around the edge zones of the overlap length due to the effect of shear stresses, while the failure at the edges of the adhesive layer originated from the peel stress in tensile.