2 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 2 / 2
Öğe Progressive failure analysis in adhesively, riveted, and hybrid bonded double-lap joints(Taylor & Francis, 2013-11) Topkaya, Tolga; Solmaz, Murat YavuzOne of the important processes in structural design is the joining technique. Failure of composite joints involves different failure mechanisms depending upon the joining technique. In this study, a progressive failure analysis was performed on adhesively, riveted, and hybrid bonded double-lap joints. In the joints, a woven-type fiberglass-reinforced composite material was used as the main material; AV 2015 was used as the adhesive, and steel as the rivet material. The analyses were performed using ANSYS 12.1 finite element package software via software written using parametric design language (APDL) codes. At the end of the progressive failure analysis, failure loads and failure modes were determined for 30-, 45-, and 60-mm overlap lengths in accordance with the Maximum Shear Stress Theory and Hashin Criteria. For 45-mm overlap lengths, the joint strength of hybrid joints proved to be 2.72 and 1.145 times higher, respectively, than adhesive and fastening joints. Results showed that the failure load of the joint increased when the overlap length increased. In riveted joints, the failure occurring in the composite plates began around the rivet hole and the catastrophic failure of these types of joints resulted from fiber tensile failure.Öğe Mechanical properties of fiber/graphene epoxy hybrid composites(SpringerLink, 2020-11-18) Çelik, Yahya Hışman; Topkaya, Tolga; Kılıçkap, ErolThe aim of this study is to determine the effect of graphene nanoparticle (GNP) reinforcement on the mechanical properties of glass fiber reinforced polymer (GFRP), carbon fiber reinforced polymer (CFRP) and aramid fiber reinforced polymer (AFRP) composites commonly used in the space and defense industry. Accordingly, GFRP, CFRP and AFRP composites were produced by using hot pressing method. In addition, hybrid fiber composites were produced by adding 0.1 %, 0.2 % and 0.3 % GNP to these fiber reinforced composites. The tensile strength and modulus of elasticity of the composites were determined. The tensile damage fracture regions were analyzed by scanning electron microscopy (SEM) and energy distribution spectrum (EDS). It was observed that the addition of 0.2 wt. % GNP to GFRP and CFRP composites increased tensile strength and modulus of elasticity. However, the addition of 0.2 wt. % GNP to AFRP composites had no effect on the tensile strength; on the contrary, it partially reduced the tensile strength but increased the modulus of elasticity. On the fracture damage surfaces of the GFRP and CFRP composites and the GNP/GFRP and GNP/CFRP hybrid composites, the fibers were completely separated. On the damage surfaces of AFRP composite and GNP/AFRP hybrid composites, the fibers were deformed but these fibers were not separated from each other. From the EDS analysis, it was observed that the element C increased in the composites with the addition of GNP to the fiber reinforced composites