Arama Sonuçları

Listeleniyor 1 - 4 / 4
  • Öğe
    Progressive failure analysis in adhesively, riveted, and hybrid bonded double-lap joints
    (Taylor & Francis, 2013-11) Topkaya, Tolga; Solmaz, Murat Yavuz
    One of the important processes in structural design is the joining technique. Failure of composite joints involves different failure mechanisms depending upon the joining technique. In this study, a progressive failure analysis was performed on adhesively, riveted, and hybrid bonded double-lap joints. In the joints, a woven-type fiberglass-reinforced composite material was used as the main material; AV 2015 was used as the adhesive, and steel as the rivet material. The analyses were performed using ANSYS 12.1 finite element package software via software written using parametric design language (APDL) codes. At the end of the progressive failure analysis, failure loads and failure modes were determined for 30-, 45-, and 60-mm overlap lengths in accordance with the Maximum Shear Stress Theory and Hashin Criteria. For 45-mm overlap lengths, the joint strength of hybrid joints proved to be 2.72 and 1.145 times higher, respectively, than adhesive and fastening joints. Results showed that the failure load of the joint increased when the overlap length increased. In riveted joints, the failure occurring in the composite plates began around the rivet hole and the catastrophic failure of these types of joints resulted from fiber tensile failure.
  • Öğe
    The flexural fatigue behavior of honeycomb sandwich composites following low velocity impacts
    (MDPI, 2020-01-13) Topkaya, Tolga; Solmaz, Murat Yavuz
    This study experimentally investigated the flexural fatigue behaviors of honeycomb sandwich composites subjected to low velocity impact damage by considering the type and thickness of the face sheet material, the cell size and the core height parameters. Carbon-fiber reinforced composite and the aluminum alloy was used as the face sheet material. First, the static strength of undamaged and damaged specimens was determined by three-point bending loads. Secondly, the fatigue behaviors of the damaged and undamaged specimens were determined. Low velocity impact damage decreased the flexural strength and fatigue lives but increased the damping ratio for all specimens. Maximum damping ratio values were observed on specimens with a aluminum face sheet.
  • Öğe
    Stress distribution in a femoral implant with and without bone cement and at different inclination angles
    (Materialpruefung/Materials Testing, 2018-04) Topkaya, Tolga; Solmaz, Murat Yavuz; Turgut, Aydın; Dündar, Serkan; Şanlıtürk, İsmail Hakkı
    The purpose of this study was to investigate numerically the effects of the inclination (collodiaphyseal) angle and bone cement (polymethylmethacrylate) filling on the stress distribution of human femurs and implants after the implementation of a partial endoprotez arthroplasty. Ti6Al4V, which is the most commonly used implant material, was choosen for this study. In the numerical study, solid models of implants and femurs were created using the SolidWorks 2010 package program, then stress analyses were carried out at five different inclination angles, 120°, 125°, 130°, 135° and 140°, with and without bone cement (polymethylmethacrylate), using the ANSYS Workbench 12.0 package program. The anteversion angle was assumed to be 12.5° for all models. As a result of the increase in the inclination angle and the addition of bone cement, it was determined that the stress values of the femurs and implants were reduced. Within the limitations of this study it has been shown that parameters like bone cement, anteversion angle, and an appropriate inclination angle should be tested previous to partial endoprosthesis arthroplasty surgery necessary as a result of damage to the human femur.
  • Öğe
    The effect of crack orientation on the propagation of cracks in graphene nanoplatelet carbon fiber-reinforced epoxy composites using digital ımage correlation
    (SpringerLink, 2021-03-27) Topkaya, Tolga
    This study experimentally investigated the fracture behaviors of graphene nanoplatelet (GNP) carbon fiberreinforced polymer (CFRP) composites for varying amounts of GNP reinforcement, crack lengths and crack orientation angles. The specimens were subjected to tensile loading, and their fracture toughness values were determined with respect to maximum damage load and crack length. To compare the results obtained from experimental data, the fracture toughness values, strain distributions and crack tip opening displacements were determined by using a Digital Image Correlation (DIC) technique from images recorded during the tests. The results showed that increasing the amount of GNP increased the fracture toughness of specimens. On the other hand, increasing the crack orientation angle decreased the fracture toughness. Increasing the crack length increased the fracture toughness values for a crack orientation angle of 30 ° but decreased for a crack orientation angle of 90 °. DIC results were found to be compatible with the calculated results using crack length and damage stress value