6 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 6 / 6
Öğe Biodiesel properties of microalgae (Chlorella protothecoides) oil for use in diesel engines(Taylor & Francis, 2018-09-08) Yaşar, Fevzi; Altun, ŞehmusIn this study, biodiesel was produced from a microalgae oil, chlorella protothecoides, by typical alkali-catalyzed transesterification in conditions such as a 0.75 wt.% KOH of the oil as catalyst, 68°C and 80 min which was agreed as optimal conditions after investigating the effect of KOH concentration, reaction temperature and time at constant molar ratio of 6:1 on the conversion rate and fuel properties. Under these conditions, a 98.6% conversion rate of algae oil to its methyl ester was achieved with ester content higher than 96%. Furthermore, all physicochemical properties met the requirements of international biodiesel standards, EN 14214 and ASTM D 6751, with some remarkable ones such as high cetane number (57.3) and low CFPP (−10°C). The effect of microalgae biodiesel volume fraction in the fuel on the kinematic viscosity, CFPP, lubricity, density, and distillation temperature was also studied. A blending ratio of the algal-biodiesel up to 50% (v/v) was also found in agreement with the standards for biodiesel-diesel blends. From GC analysis, oleic and linoleic acids were found to be major fatty acids, and then the oxygen extended sooting index and adiabatic flame temperature were calculated using fatty acid distribution for evaluating the main diesel emissions such as soot and NO. As a result, the algae oil studied here was found to be an appropriate raw material for producing biodiesel and for using in Diesel Engines and its properties are within the typical ranges of conventional biodiesel fuels.Öğe Biodiesel production from raw cottonseed oil and its characterization(Energy Education Science and Technolgy Part A, 2011-07) Altun, Şehmus; Yaşar, Fevzi; Öner, CengizIn this study, raw cottonseed oil of Turkish origin was transesterified using methyl alcohol and an alkali catalyst to obtain the cottonseed oil methyl ester. The obtained cottonseed oil methyl ester was analyzed by gas chromatography (GC) for determining the fatty acid composition. The fuel-related properties of cottonseed oil methyl ester, cold filter plugging point, cloud point, kinematic viscosity, density, cetane index, flash point, distillation, sulfur content and heating value were determined and compared with those of petroleum diesel fuel and international biodiesel standards. From gas chromatograph analysis, it was found that the cottonseed oil methyl ester has the more amount of total unsaturated FA, therefore, it showed better cold-flow properties than more saturated ones, as expected. Moreover, the fuel-related properties of cottonseed oil methyl ester were within the specified standardsÖğe Fuel properties of biodiesels produced from blends of canola oil and animal tallow(SILA SCIENCE, 2011-04) Adin, Hamit; Altun, Şehmus; Yaşar, FevziBiodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oil or animal fats by transesterification with methanol for using in diesel engines. The viscosity and density of biodiesel fuels are important parameters due to being key fuel properties for injection and combustion process of diesel engines. These fuel properties mainly depend on the feedstock which is used in the biodiesel production. Also, lubricity is an important for diesel engine fuels due to the fuel injection systems are lubricated by the fuel itself. In this study, the blends containing 0, 25, 50, 75 and 100% of food-grade canola oil/inedible animal tallow in volume basis were prepared and converted into methyl esters by base-catalyzed transesterification. Effect of canola oil ration in the feedstock on the viscosity, density and lubricity were investigated. Lubricity was determined using the high-frequency reciprocating rig (HFRR) test. Experimental results showed that the kinematics viscosity of increased as animal tallow ratio increased in the feedstock, as animal tallow itself is more viscous than canola oil. Also, density did not change much when blended feedstocks were used. Besides, it was observed that lubricity of biodiesel fuels from blended feedstocks was slightly get worse compared with pure biodiesels.Öğe Biodiesel production from leather industry wastes as an alternative feedstock and its use in diesel engines(SAGE, 2013-11-01) Altun, Şehmus; Yaşar, FevziWaste leather fat is produced by the leather industry in fleshing processing and discarded as waste. These wastes can be used as a potential feedstock for biodiesel production due to their considerable fat content. In this work, raw fleshing oil which is a fat-originated waste of the leather industry was transesterified using methanol in the presence of an alkali catalyst to obtain biodiesel. The obtained biodiesel was then used in a four-stroke and direct injection diesel engine to evaluate the biodiesel behavior as an alternative diesel fuel, at a constant speed under variable load conditions. Blends [20 and 50% (v/v)] of biodiesel with diesel reference fuel were tested too. The emissions test results compared with diesel reference fuel showed that diesel engine fueled by biodiesel emitted significantly lower opacity and gaseous emissions than the same engine fueled by diesel reference fuel, and with very similar performance. The obtained data indicated that biodiesel from leather industry wastes is promising as an alternative fuel for diesel engines, and can be used to substitute diesel fuel in terms of performance and emission parameters without any engine modification.Öğe Effect of n-butanol blending with a blend of diesel and biodiesel on performance and exhaust emissions of a diesel engine(ACS Publications, 2011-06-22) Adin, Hamit; Altun, Şehmus; Yaşar, Fevzi; Öner, CengizExperimental work was conducted to evaluate the effect of using n-butanol (normal butanol) in conventional diesel fuel–biodiesel blends on the engine performance and exhaust emissions of a single cylinder direct injection compression ignition engine with the engine working at a constant engine speed and at different three engine loads. A blend of biodiesel and diesel fuel known as B20 (20% biodiesel and 80% diesel in volume) was prepared, and then n-butanol was added to B20 at a volume percent of 10% and 20% (denoted as B20Bu10 and B20Bu20, respectively). Fuel consumption; regulated exhaust emissions such as nitrogen oxides, carbon monoxide, and total unburned hydrocarbons; and smoke opacity were measured. The brake specific fuel consumption of fuel blends was found to be higher when compared to that of conventional diesel fuel. On the other hand, the addition of n-butanol to the B20 fuel blend caused a slight increase in the brake specific fuel consumption and brake thermal efficiency in comparison to the B20 fuel blend. For exhaust emissions, carbon monoxide (CO) and hydrocarbon (HCs) emissions decreased, and NOx remained almost unchanged at low engine loads, while it decreased at high engine loads. Fuel blends also resulted in a sharp reduction of smoke opacity in the whole range of engine tests.Öğe The effect of microalgae biodiesel on combustion, performance, and emission characteristics of a diesel power generator(VINCA Institute of Nuclear Sciences, 2018) Yaşar, Fevzi; Altun, ŞehmusMicroalgae oil is expected to be a relevant source of biofuel in the future as it is more favorable to confront the problems of food shortages and greenhouse emission challenges raised by conventional biofuels. Therefore, in this study, a most common kind of microalgae that have a great potential, Chlorella protothecoides, was evaluated as fuel in terms of its combustion and emission characteristics in a Diesel engine-powered generator set at constant engine speed of 1500 rpm under various loads after converting its oil to biodiesel by typical base-catalyzed transesterification process. A biodiesel/diesel blend at the rate of 20% by volume was tested too. According to results obtained, using biodiesel resulted in an increase in fuel consumption, in a slight reduction of efficiency, and in sharp reductions in both unburned hydrocarbon emissions and smoke opacity especially at light loads, despite increasing NOx emissions were observed when compared with conventional petroleum diesel. In addition, premixed combustion ratio was higher for biodiesel than for diesel while total combustion duration took shorter for biodiesel especially at higher loads. The overall results of the study reveals that the combustion parameters of the biodiesel studied here are within the typical ranges of conventional biodiesel fuels.