2 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 2 / 2
Öğe Radiation dose estimation and mass attenuation coefficients ofcement samples used in Turkey(Elsevier, 2009-12-16) Damla, Nevzat; Çevik, Uğur; Kobya, Ali İhsan; Çelik, Ahmet; Çelik, Necati; Grieken, R. VanDifferent cement samples commonly used in building construction in Turkey have been analyzed for natural radioactivity using gamma-ray spectrometry. The mean activity concentrations observed in the cement samples were 52, 40 and 324 Bq kg−1 for 226Ra, 232Th and 40K, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and world average limits. The radiological hazard parameters such as radium equivalent activities (Raeq), gamma index (Iγ) and alpha index (Iα) indices as well as terrestrial absorbed dose and annual effective dose rate were calculated and compared with the international data. The Raeq values of cement are lower than the limit of 370 Bq kg−1, equivalent to a gamma dose of 1.5 mSv y−1. Moreover, the mass attenuation coefficients were determined experimentally and calculated theoretically using XCOM in some cement samples. Also, chemical compositions analyses of the cement samples were investigated.Öğe Assessment of natural radiation exposure levels and mass attenuation coefficients of lime and gypsum samples used in Turkey(Springer Nature, 2009-11-17) Damla, Nevzat; Çevik, Uğur; Kobya, Ali İhsan; Çelik, Ahmet; Çelik, NecatiThe activity concentrations of 226Ra, 232Th, and 40K in lime and gypsum samples used as building materials in Turkey were measured using gamma spectrometry. The mean activity concentrations of 226Ra, 232Th, and 40K were found to be 38 ± 16, 20 ± 9, and 156 ± 54 Bq kg − 1 for lime and found to be 17 ± 6, 13 ± 5, and 429 ± 24 Bq kg − 1 for gypsum, respectively. The radiological hazards due to the natural radioactivity in the samples were inferred from calculations of radium equivalent activities (Raeq), indoor absorbed dose rate in the air, the annual effective dose, and gamma and alpha indices. These radiological parameters were evaluated and compared with the internationally recommended limits. The experimental mass attenuation coefficients (μ/ρ) of the samples were determined in the energy range 81–1,332 keV. The experimental mass attenuation coefficients were compared with theoretical values obtained using XCOM. It is found that the calculated values and the experimental results are in good agreement.