Arama Sonuçları

Listeleniyor 1 - 10 / 77
  • Öğe
    Investigation of plasma arc cutting parameters with type-2 fuzzy set and system
    (De Gruyter, 2013-10) Çelik, Yahya Hışman; Özek, Cebeli; Bulut Özek, Müzeyyen
    The objective of the present study was it to design a type-2 fuzzy set and system in order to predict surface roughness and hardness depending on the parameters (material thickness, cutting speed, arc voltage and current) of the plasma arc cutting process of S235JR sheet materials. Therefore, some experimental studies were conducted. The experimentally determined data were used to describe the type-2 fuzzy set and system. Type-2 fuzzy set and system was found to be usefull to predict surface roughnes and hardness. According to the obtained values, the best surface roughness and the values closest to the hardness of the raw material were obtained at 1500 mm/min cutting speed, 8 mm material thickness, 115 V arc voltage and 80 A current.
  • Öğe
    Effects of cutting parameters and point angle on thrust force and delamination in drilling of CFRP
    (De Gruyter, 2014-11-14) Çelik, Yahya Hışman; Kılıçkap, Erol; Yardımeden, Ahmet
    Parts made of composite materials are generally produced by near-net-shape technology. However, additional machining operations such as drilling are often required to facilitate components assembling. Drilling of composite materials is also a common process in the assembly of aerospace and automotive composite structures. During drilling, unlike the conventional materials, a few damage forms may take place. Among these damage forms, the delamination is the most important one. Therefore, the experimental studies carried out on drilling of CFRP composite materials for determining optimum processing parameters are of great importance. In this particular study, delamination in CFRP composites caused by drilling was investigated. The composite material was drilled under various spindle speeds, feed rates and drill point angles. The results showed that delamination and thrust forces were affected by cutting parameters. It was demonstrated that feed rate and drill point angle make the largest contribution to the overall performance.
  • Öğe
    Forecasting financial indicators by generalized behavioral learning method
    (Springer Nature, 2017-08-09) Ertuğrul, Ömer Faruk; Tağluk, Mehmet Emin
    Forecasting financial indicators (indexes/prices) is a complex and a quite difficult issue because they depend on many factors such as political events, financial ratios, and economic variables. Also, the psychological facts or decision-making styles of investors or experts are other major reasons for this difficulty. In this study, a generalized behavioral learning method (GBLM) was employed to forecast financial indicators, which are the indexes/prices of 34 different financial indicators (24 stock indexes, 2 forexes, 3 financial futures, and 5 commodities). The achieved results were compared with the reported results in the literature and the obtained results by artificial neural network, which is widely used and suggested for forecasting financial indicators. These results showed that GBLM can be successfully employed in short-term forecasting financial indicators by detecting hidden market behavior (pattern) from their previous values. Also, the results showed that GBLM has the ability to track the fluctuation and the main trend.
  • Öğe
    Effects of ethanol addition to biodiesel fuels derived from cottonseed oil and its cooking waste as fuel in a generator diesel engine
    (Taylor & Francis, 2020-03) Karakaya, Hakan
    Exploration of energy sources such as renewable and non-edible vegetable oils has been continued during the recent two decades of 2000s. Cottonseed oil is a non-edible, abundant oil and is generally used as cooking oil. In the present study, the usability of biodiesel derived from both cottonseed oil and its cooking wastes was investigated by blending them with ULSD or ethanol in 50 percentages. B50, WB50, B50E50 and WB50E50, biodiesel and ethanol-contained fuels and ULSD were prepared for experiments. Combustion, performance, and emissions tests were conducted on a diesel engine used for power-producing electrical generator. In the combustion tests, cylinder pressure, HRR, CHR, MGT, and MFB were analyzed while MFC, BSFC, exhaust manifold temperature, and thermal efficiency were obtained in the performance tests. In the emissions tests, CO, HC, and NOx emissions were measured and compared with the results of ULSD. Combustion and performance findings of ULSD contained biodiesel blends were found more similar to those of ULSD. The duration of combustion stage can clearly be seen to be narrowed for ethanol-contained blend because of the rabid combustion characteristics of ethanol. Besides, the peak of HRR was found 10% higher for B50E50 while it was found averagely 8% for WB50E50 blends. NOx emissions were found 48% lower averagely for ethanol contained biodiesel blends that it is the most important finding of ethanol using with biodiesel. Besides, HC emissions were also found about 75% for biodiesel contained diesel fuel blends.
  • Öğe
    Transverse impact and axial compression behaviors of glass/epoxy pipes subjected to seawater and impact loading
    (SAGE, 2013-07) Deniz, Mehmet Emin; Karakuzu, Ramazan; İçten, Bülent Murat
    This article investigates the effects of seawater and impact loading on the impact behavior and compressive strength of impacted glass/epoxy composite pipes. The specimens were immersed into artificial seawater at laboratory conditions for 3, 6, 9, and 12 months. First, the impact tests were carried out on composite pipes at room temperature, and then, the axial compression tests were performed. The results of immersed samples were compared with that of reference specimens (dry). Seawater effect on the force-deflection behavior and failure mechanism is more than impact energy with increase in pipe diameter, while impact energy effect is more dominant than seawater effect for small diameters of the pipe. Compressive strength generally reduces with increase in seawater immersion time and specimen diameter except for the highest diameter.
  • Öğe
    Progressive failure analysis in adhesively, riveted, and hybrid bonded double-lap joints
    (Taylor & Francis, 2013-11) Topkaya, Tolga; Solmaz, Murat Yavuz
    One of the important processes in structural design is the joining technique. Failure of composite joints involves different failure mechanisms depending upon the joining technique. In this study, a progressive failure analysis was performed on adhesively, riveted, and hybrid bonded double-lap joints. In the joints, a woven-type fiberglass-reinforced composite material was used as the main material; AV 2015 was used as the adhesive, and steel as the rivet material. The analyses were performed using ANSYS 12.1 finite element package software via software written using parametric design language (APDL) codes. At the end of the progressive failure analysis, failure loads and failure modes were determined for 30-, 45-, and 60-mm overlap lengths in accordance with the Maximum Shear Stress Theory and Hashin Criteria. For 45-mm overlap lengths, the joint strength of hybrid joints proved to be 2.72 and 1.145 times higher, respectively, than adhesive and fastening joints. Results showed that the failure load of the joint increased when the overlap length increased. In riveted joints, the failure occurring in the composite plates began around the rivet hole and the catastrophic failure of these types of joints resulted from fiber tensile failure.
  • Öğe
    Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools
    (Springer Nature, 2017-06-01) Çelik, Yahya Hışman; Kılıçkap, Erol; Güney, Musa
    There are some problems in the machining of titanium alloys with excellent properties such as high strength, good corrosion resistance, long service life and low weight. The leading problem appears to be the fast tool wear and the bad machining surface. Therefore, in this study, it was investigated whether cutting parameters have effect on tool wear and surface roughness by turning under dry cutting condition of Ti-6Al-4V alloy with excellent properties. CVD (TiCN + Al2O3 + TiN) and PVD (TiAlN) coated WC tools were used in the experiments. Then the Ti-6Al-4V alloy turned with the combinations of the different cutting speed, feed rate, cutting long and depth of cut. We observed that the tools wear in both CVD and PVD coated WC tools increased with increasing the cutting speed, feed rate, depth of cut and cutting length. However, while tools wear increased with increasing cutting speed, the surface roughness reduced to an optimum level. Especially, the surface roughness was worsened above the optimum level changing with increasing the feed rate, cutting length and depth of cut. The tool wear with PVD coated WC tools was observed to be less than the CVD coated WC tools. However, the values of the surface roughness obtained with PVD coated WC tools with increase in depth of cut, feed rate and cutting length has given us higher values when compared to CVD coated WC tools.
  • Öğe
    Asymmetric organocatalytic efficiency of synthesized chiral β-amino alcohols in ring-opening of glycidol with phenols
    (Springer Nature, 2012-04-11) Aral, Tarık; Karakaplan, Mehmet; Hoşgören, Halil
    A series of novel chiral β-amino alcohols 3-5 and 7-10 were synthesized by regioselective ring opening of epoxides and chiral amines with a straightforward method in high yields (up to 99 %). Kinetic resolution of racemic glycidol with phenols was achieved by using chiral amino alcohols as organocatalysts. Amino alcohols 5, 8 and 10 exhibited the highest enantioselectivities with p-cresol, phenol, and p-methoxyphenol by 63, 65, 58 % ee, respectively. The moderate enantioselectivities were observed with catalyst 9b towards all the nucleophiles (34-48 % ee). The ee values of the desired 3-aryloxy-1, 2-diols were determined by HPLC. This study presents an attractive tool for the synthesis of β-blockers and structurally complex molecules.
  • Öğe
    Effect of welding parameters on microstructure and mechanical properties of AA7075/AA5182 alloys joined by TIG and MIG welding methods
    (SpringerLink, 2020) Çelik, Yahya Hışman; Temiz, Şemsettin; Çetkin, Edip
    In this study, V and X welding grooves were opened to the forehead positions of the AA5182 and AA7075 aluminum alloy pairs and these alloy pairs were joined with tungsten inert gas (TIG) and metal inert gas (MIG) methods. Three diferent welding currents were used in joints. Gas fow rates of 12 and 17 l/min at the TIG welding and wire feed rates of 38 and 45 cm/min at MIG welding were selected. The efect of the welding grooves, welding current, gas fow rate and wire feed rate on microstructure and mechanical properties were investigated. Microstructures of welding zones were analyzed by an optical microscope and a scanning electron microscope (SEM). Vickers hardness of these zones was also measured. In addition, tensile and fatigue tests were carried out. Fracture mechanisms of failed specimens were conducted after the tensile tests were examined by using SEM. The highest hardness, tensile and fatigue strengths were obtained from the alloy pairs joined by opening X welding groove with TIG welding method. These values were 89 HV, 262.87 MPa, and 131.5 MPa, respectively. Similarly, the lowest tensile and fatigue strengths were obtained from the alloy pairs joined by opening V welding groove in the TIG welding method. These values were, respectively, 94.48 MPa and 19.1 MPa. However, the minimum hardness value was measured as 58 HV from the alloy pairs joined by opening V welding groove with MIG welding methods. In addition, it was observed on the fracture surfaces that the grain distributions and mechanisms difered depending on the welding methods, welding groove, and welding parameters.
  • Öğe
    Investigate the effect of pre-drilling in friction drilling of A7075-T651
    (Taylor & Francis, 2014-04-28) Demir, Zülküf; Özek, Cebeli
    Friction drilling is a non-traditional hole achieving method that is a clean, chip-less process, which is called thermal drilling, form drilling, flow drilling, and friction stir drilling. In this study pre-drilling friction drilling was investigated for improving the bushing shape of A7075-T651, which is a brittle cast material. During the process, surface roughness and bushing shapes were analyzed and generated frictional heat was measured by the virtue of thermocouples. Experiments were carried out to 4mm and 6mm in thicknesses of A7075-T651 aluminum alloy at 1200, 1800, 2400, 3000, and 3600 rpm spindle speeds, 20, 40, 60, 80, and 100 mm/min feed rates with using high-speed steel rotating conical tool, whose diameter is 8 mm. Consequently, the bushing shapes were advanced without cracks and petal formation in pre-drilling Friction drilling in comparison with without pre-drilling process. With increasing pre-drilled hole diameter the generated frictional heat was decreased. The achieved temperature was realized to be 1/2-1/3 of the melting temperature of the workpiece. Surface roughness values were decreased with decreasing or increasing both spindle speed and feed rate correspondingly.