Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Derin öğrenme yöntemleri kullanılarak Diyarbakır yöresi karpuzu görüntülerinden ağırlığının tahmin edilmesi
    (Batman Üniversitesi Lisansüstü Eğitim Enstitüsü, 2022-08-18) Kayra, Halil; Koç, Savaş
    Bu tez çalışmasında Diyarbakır yöresinde yetişen karpuzların görüntüleri kullanılarak derin öğ-renme metotlarıyla karpuzların ağırlık tahmini yapılmıştır. Çalışmada 5000 adet karpuz görüntüsü kullanıl-mıştır. Diyarbakır yöresinde yetiştirilen karpuzların market ve semt pazarlarında fotoğrafları çekilerek bilgisayar ortamında kayıt altına alınmıştır. Toplanan karpuz görüntülerinin arka planları alındıktan sonra maskeleri Python programında yapılmıştır. Maskeler U-Net mimarisinde kullanılmak üzere eğitim dosyasına alınmıştır. Derin öğrenme yöntemlerinde evrişimli sinir ağları ile U-Net mimarisi kullanılmıştır. Görüntülerin segmentasyonu başarılı bir şekilde yapılmıştır. U-Net mimarisi %99,65 ora-nında başarılı bir şekilde karpuz görüntüsünü geometrik olarak tahmin etmiştir. U-Net modelinde elde edilen görüntülerden piksel alan metodu ile karpuzun görüntüde kapladığı alan oranı hesabı yapılmıştır. Görüntülerin boy ve en pikselleri belirlendikten sonra yapay sinir ağı ile eğitimlerine geçilmiştir. En iyi mimariyi bulmak için yapay sinir ağları 9 farklı mimari ile eğitimi yapılmıştır. En iyi mimari 4 gizli kat-mana sahip 1024 birime ayrılmış olan ve aktivasyon fonksiyonu olarak ReLU kullanılan mimari olmuş-tur. Görüntülerden elde edilen karpuz verilerinin çok katmanlı yapay sinir ağlarında eğitilmesi ile test doğruluk oranı %92,59 ve eğitim doğruluk oranı ise %94,43 bulunmuştur. Sonuç olarak oluşturulan derin öğrenme yöntemi saye-sinde 65 cm mesafede fotoğrafı çekilen karpuz görüntülerinin kaç kilo aralığında olduğu tahmin edecek bir program oluşturularak dijital tarım alanındaki çalışmalara katkıda bulunacaktır.
  • Öğe
    Derin öğrenme yöntemi ile kesici takımların sınıflandırılması ve tespiti
    (Batman Üniversitesi Lisansüstü Eğitim Enstitüsü, 2023-09-21) Taş, Kenan; Baday, Şehmus
    Gerçekleştirilen bu tez çalışmasında, tornalama işlemlerinde kullanılan ve ISO standartlarına göre C, R. S, Q vb. olarak adlandırılan takımların derin öğrenme yöntemi ile sınıflandırılması ve tahmini yapılmıştır. Bu amaçla farklı geometrik şekillere sahip kesici takım görüntüleri kullanılarak bir veri seti oluşturulmuştur. Bu veri setindeki görüntüler görüntü çoğaltma yöntemleri kullanılarak artırılmıştır. Daha sonra elde edilen bu veri setlerindeki görüntüler CNN, Xception, ResNet, LeNet, AlexNet ve GoogleNet ağ mimarileri ile kesici takım görüntüleri eğitilmiş, test edilmiş ve doğrulamaları yapılmıştır. Kesici takımların görüntüleri ISO standardında yer alan kodlara göre (C, R, S, Q vb) göre sınıflandırılmış ve görüntülerin tahmini de buna göre yapılmıştır. CNN, Xception, ResNet, LeNet, AlexNet ve GoogleNet ağ mimarileri ile eğitilen kesici takım görüntüleri doğrulama değerleri sırasıyla %91, %99, %13, %60, %97 ve %13 olarak elde edilmiştir. Bu ağ mimarilerinde en iyi sonuçları veren Xception, CNN ve AlexNet olduğu görülmüştür. ResNet, LeNet ve GoogleNet ile eğitilen görüntülerin başarı oranın düşük olduğu sonucuna varılmıştır. Sonuç olarak kesici takımların görüntüleri geliştirilen ve eğitilen derin öğrenme metodu ile değerlendirilmiştir. Böylece tornalamada ne tür bir kesici takım kullanıldığını tahmin eden ve işleme yöntemine uygun bir şekilde sınıflandırılan bir yöntem geliştirilmiştir. Bu görüntü işleme yöntemi ile kesici takımların farklı özellikleri kullanılarak sınıflandırılması ve otomasyon sistemlerinde etkin bir şekilde kullanılarak dijitalleşen sanayi alanına katkıda bulunulacaktır.