4 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 4 / 4
Öğe Coordinated design of TCSC and PSS by using PSO algorithm for enhancement of SMIB power system stability(Batman Üniversitesi, 2017) Ekinci, Serdar; Hekimoğlu, BaranThe main aim of this study is to investigate the enhancement of power system stability via individual and coordinated design of Thyristor Controlled Series Compensation (TCSC) and Power System Stabilizer (PSS) in single machine infinite bus (SMIB) power system. The coordinated design problem of PSS and TCSC-based controllers is formulated as an optimization problem with an eigenvalue-based objective function. Then, particle swarm optimization (PSO) algorithm is applied to search for optimal controller parameters. To compare the performance of PSS and TCSC-based controllers, both of them are designed independently at first and then in a coordinated manner for individual and coordinated applications. The proposed stabilizers are tested on a weakly connected power system subjected to various disturbances. The eigenvalue analysis and nonlinear simulation results show the robustness and the effectiveness of the proposed controllers and their ability to provide efficient damping of low frequency oscillations. Matlab/SIMULINK software package is used for the simulations.Öğe GLCM tabanlı k-nn sınıflandırıcı modeli ile avuç içi tanıma sistemi(Batman Üniversitesi, 2012-06-01) Çalışkan, Abidin; Acar, Emrullah; Kaya, YılmazK en yakın komşuluk algoritması, sınıflandırma problemini çözen bir algoritmadır. Sınıflandırma, yeni bir imgenin özniteliklerini inceleme ve bu imgeyi önceden tanımlanmış bir sınıfa atamaktır. Önemli olan, her bir sınıfın özelliklerinin önceden belirlenmiş olmasıdır.Bu çalışmada Hongkong Politeknik Üniversitesi veritabanına ait avuç içi imgeleri kullanılmıştır. El imgeleri ön işlemden geçirildikten sonra avuç içi imgeleri elde edilmiştir. Gri seviye eş oluşum matrisi (GLCM) metodu kullanılarak her bir imgeden öz nitelik parametreleri elde edilmiştir. Bu parametreler k en yakın komşuluk algoritması (k-NN) sınıflandırıcısının girişine verilerek performansı en iyi sistem tasarlanmıştır. Sonuç olarak en iyi performans k=1 komşuluk yapısında % 91.4 olarak gözlemlenmiştir.Öğe Örüntü tanımada hopfield ağının kullanılması(Batman Üniversitesi, 2012) Sezgin, Necmettin; Tekin, Ramazan; Çalışkan, AbidinBilgisayar teknolojisinin hızlı bir şekilde gelişmesi akıllı sistemlerin insan yaşamının birçok alanında kullanılmasını artırmıştır. Bu alanlardan birisi de alfa nümerik karakterlerin otomatik olarak doğru bir şekilde tanınması, istenen bir objenin tespit edilmesi ve seçilmesidir. Hopfield ağı, gürültülü veya bozuk olan desenin kısmi ipuçlarından ve önceden depolanmış desenlerden yararlanarak bu deseni düzeltebilen karakteristik bir yapıya sahiptir. Bu süreçte ağ, girdi örüntüsünde yapılan her ufak değişimin ardından örüntü enerjisini yeniden hesaplayarak morfolojik dönüşümünün kontrolünü sağlar ve bu örüntünün daha önce öğrendiği başka bir örüntüye yakınsamasını zorlar. Bu benzetişim işlemi, enerjideki değişkenlik durağan olana dek sürer. Nesnelerin otomatik olarak tanınması, seçilmesi ve işlenmesi gibi işlemden sorumlu bir ağın kullanıldığı akıllı sistemler özellikle robotik alanında önemli bir yere sahiptir. Bu çalışmada Hopfield ağ yapısını kullanarak örüntü tanıyan bir sistem geliştirilmeye çalışılmıştır.Öğe Gabor dalgacık dönüşümü tabanlı yapay sinir ağı modeli ile zambak yaprağı imgelerinde pas hastalıklarının tespiti(Batman Üniversitesi, 2012-06-01) Acar, Emrullah; Çalışkan, Abidin; Sezgin, NecmettinBitkilerdeki hastalıklar, hasadı ve dolayısıyla verimi etkilemektedir. Hastalıkların önceden kestirilmesi, çiftçilerin alacağı önlemler ile verimi artıracaktır. Verimi etkileyen önemli hastalıkların başında pas hastalığı gelmektedir. Bu çalışmada bitki örneği olarak, zirai uygulamalarla ilgili farklı zirai sitelerden bir uzman yardımıyla elde edilmiş zambak çiçeği yaprak imgeleri kullanılmış olup, Gabor dalgacık dönüşümü tabanlı yapay sinir ağı modeli ile pas hastalığını tespit eden bir sistem tasarlanmıştır. İlk aşamada, imgelere ilişkin Gabor dalgacık dönüşümü kullanılarak her bir sayısal imgeden ayrı bir özellik matrisi elde edilip, matrislerin ortalama, standart sapma ve entropi gibi istatistiksel değerleri hesaplanmıştır. Bu değerler öznitelik vektörüne eklenerek, her bir imge için bir öznitelik vektörü oluşturulmuştur. İkinci aşamada, Gabor dalgacık dönüşümü tabanlı öznitelik vektörleri yapay sinir ağı modelinin girişine verilerek sınıflandırma için performansı en iyi ağ yapısı belirlenmeye çalışılmıştır. Zambak çiçeği yaprak imgeleri iki (1-sağlıklı, 2- hastalıklı) grupta sınıflandırılmış olup sınıflandırma çalışmaları sonucunda, en iyi ortalama performansa %80,00 başarı ile yapay sinir ağı modelinin (3-25-1) ağ yapısında ulaştığı gözlemlenmiştir.