Arama Sonuçları

Listeleniyor 1 - 4 / 4
  • Öğe
    Forecasting financial indicators by generalized behavioral learning method
    (Springer Nature, 2017-08-09) Ertuğrul, Ömer Faruk; Tağluk, Mehmet Emin
    Forecasting financial indicators (indexes/prices) is a complex and a quite difficult issue because they depend on many factors such as political events, financial ratios, and economic variables. Also, the psychological facts or decision-making styles of investors or experts are other major reasons for this difficulty. In this study, a generalized behavioral learning method (GBLM) was employed to forecast financial indicators, which are the indexes/prices of 34 different financial indicators (24 stock indexes, 2 forexes, 3 financial futures, and 5 commodities). The achieved results were compared with the reported results in the literature and the obtained results by artificial neural network, which is widely used and suggested for forecasting financial indicators. These results showed that GBLM can be successfully employed in short-term forecasting financial indicators by detecting hidden market behavior (pattern) from their previous values. Also, the results showed that GBLM has the ability to track the fluctuation and the main trend.
  • Öğe
    Forecasting local mean sea level by generalized behavioral learning method
    (Springer Nature, 2017-03-13) Ertuğrul, Ömer Faruk; Tağluk, Mehmet Emin
    Determining and forecasting the local mean sea level (MSL), which is a major indicator of global warming, is an essential issue to set public policies to save our future. Owing to its importance, MSL values are measured and shared periodically by many agencies. It is not easy to model or forecast MSL because it depends on many dynamic sources such as global warming, geophysical phenomena, and circulations in the ocean and atmosphere. Several of researchers applied and recommended employing artificial neural network (ANN) in the estimation of MSL. However, ANN does not take into account the order of samples, which may consist essential information. In this study, the generalized behavioral learning method (GBLM), which is based on behavioral learning theories, was employed in order to achieve higher accuracies by using samples in the training dataset and the order of samples. To evaluate and validate GBLM, MSL of seven stations around the world was picked up. These datasets were employed to forecast the local MSL for the future. Obtained results were compared with the ones obtained by ANN that is trained by extreme learning machine and the literature. The GBLM is found to be successful in terms of the achieved high accuracies and the ability to tracking trends and fluctuations of a local MSL.
  • Öğe
    A novel approach for SEMG signal classification with adaptive local binary pattern
    (Springer Nature, 2015-12-31) Ertuğrul, Ömer Faruk; Kaya, Yılmaz; Tekin, Ramazan
    Feature extraction plays a major role in the pattern recognition process, and this paper presents a novel feature extraction approach, adaptive local binary pattern (aLBP). aLBP is built on the local binary pattern (LBP), which is an image processing method, and one-dimensional local binary pattern (1D-LBP). In LBP, each pixel is compared with its neighbors. Similarly, in 1D-LBP, each data in the raw is judged against its neighbors. 1D-LBP extracts feature based on local changes in the signal. Therefore, it has high a potential to be employed in medical purposes. Since, each action or abnormality, which is recorded in SEMG signals, has its own pattern, and via the 1D-LBP these (hidden) patterns may be detected. But, the positions of the neighbors in 1D-LBP are constant depending on the position of the data in the raw. Also, both LBP and 1D-LBP are very sensitive to noise. Therefore, its capacity in detecting hidden patterns is limited. To overcome these drawbacks, aLBP was proposed. In aLBP, the positions of the neighbors and their values can be assigned adaptively via the down-sampling and the smoothing coefficients. Therefore, the potential to detect (hidden) patterns, which may express an illness or an action, is really increased. To validate the proposed feature extraction approach, two different datasets were employed. Achieved accuracies by the proposed approach were higher than obtained results by employed popular feature extraction approaches and the reported results in the literature. Obtained accuracy results were brought out that the proposed method can be employed to investigate SEMG signals. In summary, this work attempts to develop an adaptive feature extraction scheme that can be utilized for extracting features from local changes in different categories of time-varying signals.
  • Öğe
    Two novel versions of randomized feed forward artificial neural networks: Stochastic and pruned stochastic
    (Springer Nature, 2017-11-13) Ertuğrul, Ömer Faruk
    Although high accuracies were achieved by artificial neural network (ANN), determining the optimal number of neurons in the hidden layer and the activation function is still an open issue. In this paper, the applicability of assigning the number of neurons in the hidden layer and the activation function randomly was investigated. Based on the findings, two novel versions of randomized ANNs, which are stochastic, and pruned stochastic, were proposed to achieve a higher accuracy without any time-consuming optimization stage. The proposed approaches were evaluated and validated by the basic versions of the popular randomized ANNs [1] are the random weight neural network [2], the random vector functional links [3] and the extreme learning machine [4] methods. In the stochastic version of randomized ANNs, not only the weights and biases of the neurons in the hidden layer but also the number of neurons in the hidden layer and each activation function were assigned randomly. In pruned stochastic version of these methods, the winner networks were pruned according to a novel strategy in order to produce a faster response. Proposed approaches were validated via 60 datasets (30 classification and 30 regression datasets). Obtained accuracies and time usages showed that both versions of randomized ANNs can be employed for classification and regression.