3 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 3 / 3
Öğe Determination of optimal insulatıon thickness in cooling for Diyarbakır city(Dicle University, 2016) Kallioğlu, Mehmet Ali; Avcı, Ali Serkan; Ercan, UmutIncrease in population and rapid technological progress as the similar energy sources are declining day by day. This situation affects the economic development negatively, which countries are energy dependent outside. Therefore, these countries, including Turkey, determine their energy strategies, productivityoriented policies need to be considered. The savings obtained by insulation will be an additional benefit to the users and therefore to the economy of the country. It is possible to reduce the amount of fuel used and determine the energy to be used as the result of determining the optimal efficiently point where the cost is reduced the most while the cooling is obtained while the cooling is being insulated. The cost of insulation while cooling is minimized, as well as maximum efficiency, reduction of the energy consumption used in the determination of the optimum point can be obtained. In this study, using the life-cycle cost analysis (LCCA), the optimum insulation thickness, annual energy saving and pay-back period analysis were carried out in area cooling at 22 C 0 for Diyarbakır province. Diyarbakir for extruded polystyrene (XPS) used when the optimum thickness of 0.0277 (m), 63.66% annual gain, payback period of 3.13 (years). Expanded polystyrene (EPS) in optimum thickness 0,037 (m), 47.10% annual gain, payback period of 2,069 (years) where such parameters.Öğe Environmental and economic analysis of optimum heat insulation thickness in energy saving(European Journal of Technique (EJT), 2016-08-01) Karakaya, Hakan; Kallioğlu, Mehmet Ali; Arca Batı, Zülal; Durmuş, AylaDeveloping technology and increasing population cause the natural energy resources rapidly. This has compulsorily forced the countries such as Turkey, which import almost all energy needs and use great deal of it in home heating, to save energy. It will provide benefits for users, indirectly the economy of the country, with saving obtained from insulation. One of the most effective methods attaining gain of energy is heat insulation. While heat insulation is carried out, by determining the optimum efficiency point, the amount of fuel used decreases, which leads to cost reduction and highest efficiency level. Therefore, it is possible to tolerate harmful emissions. In this study, optimum insulation thickness, total cost, energy saving, duration of pay-back and environmental analysis for heating were conducted in Diyarbakır by utilizing different fuel and insulation types. When extruded polystyrene (XPS) was used, average optimum thickness was 0,0675 (m), annual return was 62,165%, duration of pay back was 1,83 (years) and CO2 and SO2 emissions were 76% lesser. When expanded polystyrene (EPS) was used, the parameters such as average optimum thickness 0,0825 (m), annual return 73,06%, duration of pay back 1,245 (years) and CO2 and SO2 emissions 85% lesser.Öğe Environmental and economic analysis of optimum heat insulatıon thickness in energy saving(Dicle University, 2016) Kallioğlu, Mehmet Ali; Karakaya, Hakan; Arca Batı, ZülalDeveloping technology and increasing population cause the natural energy resources rapidly. This has compulsorily forced the countries such as Turkey, which import almost all energy needs and use great deal of it in home heating, to save energy. It will provide benefits for users, indirectly the economy of the country, with saving obtained from insulation. One of the most effective methods attaining gain of energy is heat insulation. While heat insulation is carried out, by determining the optimum efficiency point, the amount of fuel used decreases, which leads to cost reduction and highest efficiency level. Therefore, it is possible to tolerate harmful emissions. In this study, optimum insulation thickness, total cost, energy saving, duration of pay-back and environmental analysis for heating were conducted in Diyarbakır by utilizing different fuel and insulation types. When extruded polystyrene (XPS) was used, average optimum thickness was 0,0675 (m), annual return was 62,165%, duration of pay back was 1,83 (years) and CO2 and SO2 emissions were 76% lesser. When expanded polystyrene (EPS) was used, the parameters such as average optimum thickness 0,0825 (m), annual return 73,06%, duration of pay back 1,245 (years) and CO2 and SO2 emissions 85% lesser.