Arama Sonuçları

Listeleniyor 1 - 4 / 4
  • Öğe
    Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants
    (Taylor & Francis, 2016-01) Topkaya, Tolga; Dündar, Serkan; Solmaz, Murat Yavuz; Yaman, Ferhan; Atalay, Yusuf; Saybak, Arif; Asutay, Fatih; Çakmak, Ömer
    The aim of this study was to examine the stress distributions with three different loads in two different geometric and threaded types of dental implants by finite element analysis. For this purpose, two different implant models, Nobel Replace and Nobel Active (Nobel Biocare, Zurich, Switzerland), which are currently used in clinical cases, were constructed by using ANSYS Workbench 12.1. The stress distributions on components of the implant system under three different static loadings were analysed for the two models. The maximum stress values that occurred in all components were observed in FIII (300 N). The maximum stress values occurred in FIII (300 N) when the Nobel Replace implant is used, whereas the lowest ones, in the case of FI (150 N) loading in the Nobel Active implant. In all models, the maximum tensions were observed to be in the neck region of the implants. Increasing the connection between the implant and the bone surface may allow more uniform distribution of the forces of the dental implant and may protect the bone around the implant. Thus, the implant could remain in the mouth for longer periods. Variable-thread tapered implants can increase the implant and bone contact.
  • Öğe
    Progressive failure analysis in adhesively, riveted, and hybrid bonded double-lap joints
    (Taylor & Francis, 2013-11) Topkaya, Tolga; Solmaz, Murat Yavuz
    One of the important processes in structural design is the joining technique. Failure of composite joints involves different failure mechanisms depending upon the joining technique. In this study, a progressive failure analysis was performed on adhesively, riveted, and hybrid bonded double-lap joints. In the joints, a woven-type fiberglass-reinforced composite material was used as the main material; AV 2015 was used as the adhesive, and steel as the rivet material. The analyses were performed using ANSYS 12.1 finite element package software via software written using parametric design language (APDL) codes. At the end of the progressive failure analysis, failure loads and failure modes were determined for 30-, 45-, and 60-mm overlap lengths in accordance with the Maximum Shear Stress Theory and Hashin Criteria. For 45-mm overlap lengths, the joint strength of hybrid joints proved to be 2.72 and 1.145 times higher, respectively, than adhesive and fastening joints. Results showed that the failure load of the joint increased when the overlap length increased. In riveted joints, the failure occurring in the composite plates began around the rivet hole and the catastrophic failure of these types of joints resulted from fiber tensile failure.
  • Öğe
    Numerical analysis of the effect of implant geometry to stress distributions of the three different commercial dental implant system
    (Sivas Cumhuriyet Üniversitesi, 2015-02-11) Topkaya, Tolga; Solmaz, Murat Yavuz; Dündar, Serkan; Eltas, Abubekir
    Objectives: The success of dental implants is related to the quality, quantity of local bones, implant design and surgical technique. Implant diameter and length are accepted as key factors. Present work focuses to investigate the effect of titanium implant geometry to stress distributions in implant system. Materials and Methods: For this purpose three different implant models which are currently being used in clinical cases constructed by using ANSYS Workbench 12.1. The stress distributions on components of implant system under static loadings were analyzed for all models. Results: The maximum stress values that occurred in all components happen in the case of loading in which the Nucleoss T-4 (Nucleoss, Turkiye) implant is used, but the occurred lowest stress values happen in the case of Fı loading in which Nobel Active (Nobel Biocare, Zurich, Switzerland) implant is used. In all models, the maximum tensions have occurred in the neck region of the implants. Conclusions: The crestal bone loss in the neck region of the implants reduced the long-term survival rate of implants.The length and the size of the implant are the two important factors in the stress distribution.
  • Öğe
    Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates
    (Elsevier, 2013-07) Deniz, Mehmet Emin; İçten, Bülent Murat; Gören Kıral, Binnur
    In this study, the effect of impactor diameter on the impact response of woven glass–epoxy laminates has been investigated. Impact tests were performed by using Fractovis Plus test machine with four different impactor nose diameters as 12.7, 20.0, 25.4 and 31.8 mm. Specimens were impacted at various impact energies ranging from 5 J to perforation thresholds of the composite at room temperature. Variation of the impact characteristics such as the maximum contact load, maximum deflection, maximum contact time and absorbed energy versus impact energy are investigated. Results indicated that the projectile diameter highly affects the impact and Compression After Impact (CAI) response of composite materials.