3 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 3 / 3
Öğe Laws doku enerji ölçümü tabanli k-NN siniflandirici modeli ile iris tanima sistemi(IEEE, 20013-06-13) Acar, Emrullah; Özerdem, Mehmet SiraçBiyometrik tanıma teknolojisi genellikle çok pahallı ve son derece önemli güvenlik uygulamaları ile ilişkili olmuştur.İris tanıma sistemi, etkili biyometrik tanımasistemlerinden biridir. Bu çalışmada, farklı insanlardan elde edilen gözimgelerininiçerdiği irisdokuözelliklerinegörekişilerin tanınmasıamaçlanmıştır. İmgeler CASIAiris veritabanındanelde edilmiştir. İmge dokusuna duyarlı yeni yöntemlerdenbiri olanLawsDoku Enerji Ölçümü (Laws TEM) kullanılarak, iris dokusunun belirli yerelalanlarındanöznitelik vektörleri elde edilmiştir. kEn Yakın Komşu (k-NN) sınıflandırıcıparametrelerinden komşu sayısı(k) farklı değerlerde alınarak, elde edilen öznitelik vektörleri k-NN sınıflandırıcısı ile ayrıştırılmıştır. Farklı komşu sayılarına göre sisteminperformans değerlerikarşılaştırılmıştır. Sonuç olarak en yüksek ortalama performans,k-NNsınıflandırıcısınınk=1ve 2komşularıyapısında % 80.74olarak gözlemlenmiştir.Öğe Horlama işaretlerinden uyku apnesi teşhisinde yeni bir yaklaşım: Üçlü desen yöntemi(IEEE, 2017-11-02) Kaya, Yılmaz; Sezgin, Necmettin; Ertuğrul, Ömer FarukBu çalışmada, Tıkayıcı Uyku Apnesi Sendromu (TUAS) kestirimi için yeni bir yaklaşım önerilmektedir. TUAS, insan hayat konforunu etkileyen son derece ciddi bir uyku hastalığıdır. TUAS’ın teşhisi genellikle pahalı cihazlar ile uzman hekimler tarafından yapılmaktadır. Dolayısıyla TUAS gibi ciddi bir hastalığın daha erken teşhis edilerek tedavi edilmesi gerekmektedir. Bu çalışmada horlama işaretlerinden TUAS teşhisi için yeni bir öznitelik çıkarım yöntemi önerilmiştir. Bir (1) boyutlu üçlü desen yöntemi ile ham horlama işaretlerinden etkili öznitelikler çıkarılarak sınıflandırma yöntemleri ile teşhis işlemi gerçekleştirilmiştir. Elde edilen sonuçlara göre 1B-ÜD yönteminin horlama işaretlerinden TUAS teşhisinde önemli başarı sağladığı görülmüştür. Bu çalışmada kullanılan yöntemin, uyku laboratuvarlarında kullanılabilir olması ile hastayı Polisomnografi (PSG) cihazı ile gece boyunca teste tutmadan önce uzman hekimlere bir ön test yapma şansı verebileceği düşünülmektedir.Öğe A novel machine learning method based on generalized behavioral learning theory(Springer Nature, 2016-04-09) Ertuğrul, Ömer Faruk; Tağluk, Mehmet EminLearning is an important talent for understanding the nature and accordingly controlling behavioral characteristics. Behavioral learning theories are one of the popular learning theories which are built on experimental findings. These theories are widely applied in psychotherapy, psychology, neurology as well as in advertisements and robotics. There is an abundant literature associated with understanding learning mechanism, and various models have been proposed for the realization of learning theories. Nevertheless, none of those models are able to satisfactorily simulate the concept of classical conditioning. In this study, popular behavioral learning theories were firstly simplified and the contentious issues with them were clarified by conducting intuitive experiments. The experimental results and information available in the literature were evaluated, and behavioral learning theories were jointly generalized accordingly. The proposed model, to our knowledge, is the first one that possesses not only modeling all features of classical conditioning but also including all features with behavioral theories such as Pavlov, Watson, Guthrie, Thorndike and Skinner. Also, a microcontroller card (Arduino Mega 2560) was used to validate the applicability of the proposed model in robotics. Obtained results showed that this generalized model has a high capacity for modeling human learning. Then, the proposed learning model was further improved to be utilized as a machine learning method that can continuously learn similar to human being. The result obtained from the use of this method, in terms of computational cost and accuracy, showed that the proposed method can be successfully employed in machine learning, especially for time ordered datasets.