Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Analysis of spheroidized AISI 1050 steel in terms of cutting forces and surface quality
    (Slovenska Akademia Vied, 2016) Baday, Şehmus; Başak, Hüdayim; Güral, Ahmet
    In this study, the effects of microstructure differences obtained with the application of different spheroidizing heat treatment cycles on medium carbon steel on cutting forces and surface roughness values were investigated. For this purpose, a group of AISI 1050 materials was annealed at 700°C below Ac1 temperature for 720 min and cementite phases were spheroidized by the traditional method. Another group of materials was quenched after austenitization at 850°C for 15 min and then cementites were spheroidized in the ferrite matrix by over-tempering separately at 600°C for 15 and 60 min and at 700°C for 60 min. Machining of the samples was tested under dry cutting conditions in CNC turning center with SNMG 120408 cementite carbide cutting tool and proper PSBNR 2525M12 tool holder with 75-degree edge angle. Cutting forces of traditionally spheroidized samples were lower than the samples spheroidized after quenching. In addition, their cutting forces decreased due to the increase in the average sizes of spheroidal cementite. Minimum surface roughness value was obtained from the samples which were spheroidized at 600°C for 15 min after quenching. However, surface roughness rate of the sample increased as spheroidizing time increased.
  • Öğe
    Estimate of cutting forces and surface roughness in end milling of glass fiber reinforced plastic composites using fuzzy logic system
    (Walter de Gruyter, 2014-06-01) Çelik, Yahya Hışman; Kılıçkap, Erol; Yardımeden, Ahmet
    Milling glass fiber reinforced plastic (GFRP) composite materials are problematic, owing to, e.g., nonhomogeneous and anisotropic properties and effects of plastic deformation. To reduce these problems, the effects of cutting speed, feed rate, and the number of flutes on surface roughness and of thrust forces occurring during the milling of GFRP composite materials were investigated by both experimental and fuzzy logic models. Experiments were performed at 30 m/min, 60 m/min, and 90 m/min cutting speeds, at 0.1 mm/rev, 0.15 mm/rev, and 0.2 mm/rev feed rates and 10 mm diameters in a cemented carbide end mill, which has two, three, and four flutes without cutting fluids. The values obtained from experiments were defined by a fuzzy logic model. A fuzzy logic model was employed to estimate the surface roughness and thrust forces for different cutting parameters. As a result of both the experimental study and the fuzzy logic model, while the minimum thrust force was obtained at low cutting speeds, and feed rates and a high number of flutes end mill, the best surface quality was obtained at low feed rates, high cutting speed, and number of flutes end mill.