Arama Sonuçları

Listeleniyor 1 - 3 / 3
  • Öğe
    Analysis of ethanol RCCI application with safflower biodiesel blends in a high load diesel power generator
    (Elsevier, 2016-11-15) Işık, Mehmet Zerrakki; Aydın, Hüseyin
    The effects of RCCI in a diesel power generator by using safflower oil biodiesel-diesel blends were experimentally investigated. Ethanol was premixed as PFI by rates of 30% and 50% of total mass fuel consumption of the engine. Tests were conducted at constant engine speed of 1500 rpm and fixed load 10.8 kW engine power. The purpose of blending biodiesel with diesel is to increase the fuel reactivity of primary fuel in order to easily initiate the combustion. Therefore, test fuels were prepared by blending 10% of the biodiesel with 90% of diesel, 20% of the biodiesel with 80% of diesel and 50% of the biodiesel with 50% of diesel. The most important combustion, performance and emission indicators of the engine under various conditions have been deeply investigated and results have been presented. The ethanol RCCI operation increased peak pressure values especially with using of B50 as high reactivity fuel while combustion was retarded for both RCCI modes. Overall, many indicators of the combustion was improved. Performance parameters were developed. Especially, bsfc was considerably increased. NOx, emissions were considerably decreased while CO and HC emissions were a bit increased.
  • Öğe
    Effect of using bioethanol as fuel on start-up and warm-up exhaust emissions from a diesel power generator
    (Taylor & Francis, 2021-09-01) Altun, Şehmus; Adin, Mehmet Şükrü; Adin, Muhammed Şakir
    The present work investigates the effects of bioethanol as fuel additive on a diesel power generator’s exhaust emission (especially under transient conditions) characteristics, during the start-up followed by idling and warm-up periods, from no load to loaded cases up to 50% at ambient conditions. Experiments with diesel/bioethanol blends in 10% and 15% proportions (denoted as BE10 and BE15, respectively) were achieved in a diesel power generator following the practical operating conditions of the gen-sets. Regarding emissions, CO increased first when bioethanol is used during start-up at no load, then it starts to decrease by increasing bioethanol fraction in diesel and load applied. Unburnt HC emissions were also measured as highest for all fuels tested during start-up, while they were slightly higher for BE15 than others in the rest of the test. NOx was highest with petroleum diesel, while it was lowest with BE15 at start-up. Despite higher NOx was measured with BE10, those of petroleum diesel and BE15 were similar during warm-up together with applying load. Smoke opacity was lowest in BE15; however, BE10 was highest. By applying load, it increased and the highest NOx was measured with BE10, while the lowest was with BE15.
  • Öğe
    The effect of microalgae biodiesel on combustion, performance, and emission characteristics of a diesel power generator
    (VINCA Institute of Nuclear Sciences, 2018) Yaşar, Fevzi; Altun, Şehmus
    Microalgae oil is expected to be a relevant source of biofuel in the future as it is more favorable to confront the problems of food shortages and greenhouse emission challenges raised by conventional biofuels. Therefore, in this study, a most common kind of microalgae that have a great potential, Chlorella protothecoides, was evaluated as fuel in terms of its combustion and emission characteristics in a Diesel engine-powered generator set at constant engine speed of 1500 rpm under various loads after converting its oil to biodiesel by typical base-catalyzed transesterification process. A biodiesel/diesel blend at the rate of 20% by volume was tested too. According to results obtained, using biodiesel resulted in an increase in fuel consumption, in a slight reduction of efficiency, and in sharp reductions in both unburned hydrocarbon emissions and smoke opacity especially at light loads, despite increasing NOx emissions were observed when compared with conventional petroleum diesel. In addition, premixed combustion ratio was higher for biodiesel than for diesel while total combustion duration took shorter for biodiesel especially at higher loads. The overall results of the study reveals that the combustion parameters of the biodiesel studied here are within the typical ranges of conventional biodiesel fuels.