Arama Sonuçları

Listeleniyor 1 - 3 / 3
  • Öğe
    Hardness and wear behaviours of al matrix composites and hybrid composites reinforced with B 4 C and SiC
    (Springer Nature, 2019-01-15) Çelik, Yahya Hışman; Kılıçkap, Erol
    The conversion into the desired shape of the metal powders using Powder Metallurgy (PM) method enables economically mass productions. This case allows producing parts with complex and high dimensional accuracy with no machining. In this study the composites and hybrid composites with Al matrix were produced using PM method with different ratios B4C and SiC. Microhardness and wear experiments of the produced composites were investigated. Wear experiments were performed at a constant speed of 0.5 m/s, application loads of 5, 10 and 15 N and sliding distances of 250, 500, and 750 m. Then, SEM images of composites and hybrid composites were captured. The increase of the reinforcement ratio in the composites contributed to the increase of the hardness. The highest hardness value was computed as 58.7 HV from 16% B4C reinforced composite. In addition, the increase in the reinforcement ratio contributed to the increase of the wear resistance. The increase in the load and sliding distance also increased the wear. The minimum weight loss was calculated as 18 mg from 5 N load, 250 m sliding distance and 16% SiC reinforced composite.
  • Öğe
    Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools
    (Springer Nature, 2017-06-01) Çelik, Yahya Hışman; Kılıçkap, Erol; Güney, Musa
    There are some problems in the machining of titanium alloys with excellent properties such as high strength, good corrosion resistance, long service life and low weight. The leading problem appears to be the fast tool wear and the bad machining surface. Therefore, in this study, it was investigated whether cutting parameters have effect on tool wear and surface roughness by turning under dry cutting condition of Ti-6Al-4V alloy with excellent properties. CVD (TiCN + Al2O3 + TiN) and PVD (TiAlN) coated WC tools were used in the experiments. Then the Ti-6Al-4V alloy turned with the combinations of the different cutting speed, feed rate, cutting long and depth of cut. We observed that the tools wear in both CVD and PVD coated WC tools increased with increasing the cutting speed, feed rate, depth of cut and cutting length. However, while tools wear increased with increasing cutting speed, the surface roughness reduced to an optimum level. Especially, the surface roughness was worsened above the optimum level changing with increasing the feed rate, cutting length and depth of cut. The tool wear with PVD coated WC tools was observed to be less than the CVD coated WC tools. However, the values of the surface roughness obtained with PVD coated WC tools with increase in depth of cut, feed rate and cutting length has given us higher values when compared to CVD coated WC tools.
  • Öğe
    Investigation of wear behavior of aged and non-aged SiC-reinforced AlSi7Mg2 metal matrix composites in dry sliding conditions
    (SpringerLink, 2020-01) Çelik, Yahya Hışman; Kılıçkap, Erol; Demir, Mehmet Emin; Kalkanlı, Ali
    Metal matrix composites (MMCs) with their splendid mechanical properties have been specifcally designed for use in felds such as aerospace and aviation. The presence of hard ceramic particles in MMC increases the hardness of the matrix product and decreases its coefcient of friction. Therefore, the wear resistance is improved. Moreover, the mechanical properties of these composite materials can be improved by applying heat treatments. In this study, AlSi7Mg2 MMCs with 15 wt% SiC reinforcement were produced by squeeze casting technique. Some of the composites were aged by heat treatment. Hardness values of aged and non-aged composites were compared. In addition, abrasive wear behaviors of these composites were investigated on pin-on-disk device, depending on the load (7, 12 and 17 N), the sliding speed (0.2, 0.3 and 0.4 m/s) and the sliding distance (700, 1000 and 1300 m). Worn surfaces were also analyzed by scanning electron microscopy (SEM). As a result of the analyses, it was determined that both the hardness values and the wear resistance were higher in the composites subjected to aging treatment. Furthermore, it was observed that the increase in the applied load led up to the weight loss. The increase in the sliding distance increased both friction coefcient and weight loss. The increase in sliding speed also made way for the friction coefcient but ensured less weight loss. When SEM images were examined, it was ascertained that deformation and tribo-surface formation had a signifcant efect on weight losses.