2 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 2 / 2
Öğe Radiation dose estimation and mass attenuation coefficients ofcement samples used in Turkey(Elsevier, 2009-12-16) Damla, Nevzat; Çevik, Uğur; Kobya, Ali İhsan; Çelik, Ahmet; Çelik, Necati; Grieken, R. VanDifferent cement samples commonly used in building construction in Turkey have been analyzed for natural radioactivity using gamma-ray spectrometry. The mean activity concentrations observed in the cement samples were 52, 40 and 324 Bq kg−1 for 226Ra, 232Th and 40K, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and world average limits. The radiological hazard parameters such as radium equivalent activities (Raeq), gamma index (Iγ) and alpha index (Iα) indices as well as terrestrial absorbed dose and annual effective dose rate were calculated and compared with the international data. The Raeq values of cement are lower than the limit of 370 Bq kg−1, equivalent to a gamma dose of 1.5 mSv y−1. Moreover, the mass attenuation coefficients were determined experimentally and calculated theoretically using XCOM in some cement samples. Also, chemical compositions analyses of the cement samples were investigated.Öğe Characterization of hazelnut, pistachio, and apricot Kernel Shell particles and analysis of their composite properties(Taylor & Francis, 2021-05) Çelik, Yahya Hışman; Topkaya, Tolga; Kılıçkap, Erol; Başaran, Eyüp; Yalçın, RojinIn this study, hazelnut, pistachio, and apricot kernel shells were ground size of 0–300 µm, 300–600 µm, and 600–850 µm. The cellulose, ash, humidity, and metal contents of these powder particles were chemically analyzed and structural properties were characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectrometer (FT-IR) analysis. Their composites were fabricated by adding 0%, 10%, 20%, and 30% by weight of these powder particles to the polyester matrix material. The effect of chemical and structural properties of the powder particles on the physical, thermal, and mechanical properties of the composites was analyzed. The XRD analysis revealed that cellulose structure observed in powder particles. The peaks observed in their surface functional structures with FT-IR were mainly caused by cellulose and hemicellulose structures. These structures effected humidity and ash ratios. Nitrogen, carbon, hydrogen, and oxygen elements were seen in the structure. In addition, heavy metals such as Sn, Ca, K, Na, Mg, Fe, Ni, Mn, Cu, Zn, and Si were found. Powder particles added to the polyester material adversely affected the tensile strength of the matrix material. However, powder particles added to the matrix material at low rates had a positive effect on bending and compressive strength.