Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    An artificial neural network model to predict the thermal properties of concrete using different neurons and activation functions
    (Hindawi, 2019-04-01) Fidan, Şehmus; Oktay, Hasan; Polat, Süleyman; Öztürk, Sarper
    Growing concerns on energy consumption of buildings by heating and cooling applications have led to a demand for improved insulating performances of building materials. The establishment of thermal property for a building structure is the key performance indicator for energy efficiency, whereas high accuracy and precision tests are required for its determination which increases time and experimental costs. The main scope of this study is to develop a model based on artificial neural network (ANN) in order to predict the thermal properties of concrete through its mechanical characteristics. Initially, different concrete samples were prepared, and their both mechanical and thermal properties were tested in accordance with ASTM and EN standards. Then, the Levenberg-Marquardt algorithm was used for training the neural network in the single hidden layer using 5, 10, 15, 20, and 25 neurons, respectively. For each thermal property, various activation functions such as tangent sigmoid functions and triangular basis functions were used to examine the best solution performance. Moreover, a cross-validation technique was used to ensure good generalization and to avoid overtraining. ANN results showed that the best overall R2 performances for the prediction of thermal conductivity, specific heat, and thermal diffusivity were obtained as 0.996, 0.983, and 0.995 for tansig activation functions with 25, 25, and 20 neurons, respectively. The performance results showed that there was a great consistency between the predicted and tested results, demonstrating the feasibility and practicability of the proposed ANN models for predicting the thermal property of a concrete.
  • Öğe
    Forecasting and analyzing the dynamics of the outbreak in Hubei and Turkey
    (Bilim Akademisi, 2020) Aslan, İbrahim Halil; Demir, Mahir; Wise, Michael Morgan; Lenhart, Suzanne
    As the pandemic of Coronavirus Disease 2019 (COVID-19) rages throughout the world, accurate modeling of the dynamics thereof is essential. However, since the availability and quality of data varies dramatically from region to region, accurate modeling directly from a global perspective is difficult, if not altogether impossible. Nevertheless, via local data collected by certain regions, it is possible to develop accurate local prediction tools, which may be coupled to develop global models. In this study, we analyze the dynamics of local outbreaks of COVID-19 via a coupled system of ordinary differential equations (ODEs). Utilizing the large amount of data available from the ebbing outbreak in Hubei, China as a testbed, we estimate the basic reproductive number, R0 of COVID-19 and predict the total cases, total deaths, and other features of the Hubei outbreak with a high level of accuracy. Through numerical experiments, we observe the effects of quarantine, social distancing, and COVID-19 testing on the dynamics of the outbreak. Using knowledge gleaned from the Hubei outbreak, we apply our model to analyze the dynamics of outbreak in Turkey. We provide forecasts for the peak of the outbreak and the total number of cases/deaths in Turkey, for varying levels of social distancing, quarantine, and COVID-19 testing