Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Experimental determination of the static and fatigue strength of theadhesive joints bonded by epoxy adhesive including different particles
    (Elsevier, 2018-12) Adin, Hamit; Saraç, İsmail; Temiz, Şemsettin
    Because of their many advantages, adhesively bonded joints are intensively used in many engineeringfields. So,the mechanical research of the adhesively bonded joints is very important to use these joints safely. There aremany studies performed by researchers to investigate the mechanical properties of the adhesive joints. There hasbeen a considerable interest in nanoparticles added to structural adhesives recently because nanoparticles im-prove the mechanical properties of adhesives and joints. In this paper, different nanoparticles reinforced byepoxy adhesive, and neat adhesive were used to produce single lap joints. The static and fatigue strengths ofsingle lap joints incorporating nanoparticles were compared to those without nanoparticles. Experiments wereperformed at 20 mm overlap length. DP460 epoxy was used as the adhesive material, and nano-Al2O3, nano-TiO2and nano-SiO2were used as the nanoparticles; and AISI 304 stainless steel plates were used as the adherents. Theresults of the experimental research revealed that average failure load increased significantly in nanoparticle-reinforced adhesive joints. The highest average failure load was obtained with 4 wt% nano-Al2O3in epoxyadhesive. Fatigue tests were performed at 10 Hz frequency, and 0.1 loading ratio (R). When the fatigue testresults were examined, it was observed that the addition of the nano-Al2O3and nano-SiO2to the adhesiveincreased fatigue strength of the adhesive joints, on the other hand, the addition of the nano-TiO2to the adhesivereduced fatigue strength of the adhesive joints.
  • Öğe
    Repair of an aluminum plate with an elliptical hole using a composite patch
    (Carl Hanser Verlag, 2018-11-15) Ergün, Raşit Koray; Adin, Hamit; Şişman, Abdullah; Temiz, Şemsettin
    In this paper, the stress on axially loaded metal sheets with elliptical holes reinforced by a double-sided composite patch was analysed. The metal sheets with elliptical holes were subjected to axial loading, although no load was applied along the edges of the holes. The central elliptical holes on the metal plates had different diameters. The overlap distance of composite patches, which were adhesively bonded on each side, was of varied lengths. Elasto-plastic stress analyses were examined by means of the finite element method (FEM). The experimental results were compared with numerical results and a convergence rate of 92 % was achieved.