Arama Sonuçları

Listeleniyor 1 - 5 / 5
  • Öğe
    The special gaps of some Arf numerical semigroups
    (IKSAD Publishing House, 2018-05-01) Süer, Meral; Yalçın, Burak Yasin
    The concept of special gap of a numerical semigroup is used to by the problem of finding the set of all numerical semigroups containining a given numerical semigroup. In this study, we will find the specific gaps of some Arf numerical semigroups families and all numerical semigroups containining them.
  • Öğe
    Betti numbers of some telescopic numerical semigroups
    (IKSAD Publishing House, 2018-05-01) Süer, Meral; Sezgin, Mehmet Şirin
    Let be the set of nonnegative integers. A numerical semigroup is a nonempty subset M of that is closed under addition, contains the zero element, and whose complement in is finite. In this study, we will examine the Betti numbers of some telescopic numerical semigroup families with generated triply. And we will try to express in terms of generators of these numerical semigroup families. So we will find a formula for the Betti numbers of these numerical semigroup families.
  • Öğe
    Delta sets of some pseudo-symmetric numerical semigroups
    (IKSAD Publishing House, 2018-05-01) Süer, Meral; Çelik, Özkan
    A numerical semigroup is a submonoid of , the set of nonnegative integers, under addition and with finite complement in . If the numerical semigroup is the form with an integer not divisible by tree, then is a pseudo symmetric numerical semigroup with embedding dimension and multiplicity three. We present procedures to calculate the delta of pseudo- symmetric numerical semigroups as given above. Also, we will give a relation between the betti numbers and the delta sets of these semigroups.
  • Öğe
    On a class of Arf numerical semigroups
    (Fırat Üniversitesi, 2016-05) Süer, Meral; İlhan, Sedat
    A subset S of N is called a numerical semigroup if S is closed under addition and S has element 0 and N\S is finite where N denotes the set of nonnegative integers. In this study, we are interested two subclass of maximal embedding dimension numerical semigroups, which are those semigroups having the Arf property and saturated numerical semigroups. We introduce a new class of both Arf property and saturated numerical semigroups with multiplicity four. We consider numerical semigroups minimally generated by {4, k, k+1, k+2}. Where k is an integer greater than or equal to 5 and k is congruent to 1 (modulo 4). We prove that all these semigroups are both numerical semigroups with Arf property and saturated numerical semigroup. There is not any formulas to calculate invariants as Frobenius number, gaps, n(S) and genus of S even for numerical semigroup with multiplicity four. But this invariants have been calculated by imposing some conditions on elements of the numerical semigroup S. We calculate the Frobenius number, the genus and the set of gaps of each of these numerical semigroups. Additionally, we give a relation between the set of pseudo- Frobenius numbers and the set of all fundamental gaps of these numerical semigroups.
  • Öğe
    Some results on telescopic numerical semigroups
    (Yıldız Teknik Üniversitesi, 2017-05) Süer, Meral; İlhan, Sedat