4 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 4 / 4
Öğe Comparison of CLTD and TETD cooling load calculation methods for different building envelopes(Mugla Sitki Kocman University, 2020-06-30) Oktay, Hasan; Yumrutaş, Recep; Işık, Mehmet ZerrakkiThe estimation of the cooling load through the building envelope is an essential task in the selection of proper HVAC system components that influences the building’s performance. For this task, ASHRAE has presented several methods to calculate the building cooling load due to heat gain, such as the total equivalent temperature difference method (TETD), the cooling load temperature difference method (CLTD), and the radiant time series method (RTS). The present study aims to explore the accuracies of those calculation methods in terms of energy efficiency. In this regard, an analytical solution method utilizing Complex Finite Fourier Transform Technique (CFFT) was developed for the calculation of cooling load due to heat gain to compare the temperature differences obtained from the TETD and CLTD methods. Then, a computer program was prepared in MATLAB to perform the calculations based on an analytical methodology. Besides, the estimated CLTD and TETD values by the CFFT were compared with those values presented in the Handbook of the ASHRAE. The calculation results revealed there is a good agreement between the analytical and presented results in the ASHRAE Manual for the selected building envelopes. However, several differences were found between the estimated TETD and CLTD cooling load values and those presented in the Handbook of ASHRAEÖğe An investigation of the influence of thermophysical properties of multilayer walls and roofs on the dynamic thermal characteristics(Mugla Sitki Kocman University, 2016-06-09) Oktay, Hasan; Argunhan, Zeki; Yumrutaş, Recep; Işık, Mehmet Zerrakki; Budak Ziyadanoğulları, NeşeThe growing concern about energy consumption of heating and cooling of buildings has led to a demand for improved thermal performances of building materials. To achieve this goal, in this study, an investigation is performed to analyze the influence of thermophysical properties and thickness of various multilayer building walls or roofs in a building on the dynamic thermal characteristics, such as the decrement factor (DF), time lag (TL) and heat gain. In order to find the thermal performance characteristics of building structures, such as briquette, brick, blockbims and autoclaved aerated concrete (AAC), which are commonly used in Turkey, an analytical solution method was developed in a computer program in MATLAB and results are compared to determine suitable wall or roof material. Calculation method for the heat flow is based on solution of transient heat transfer problem for the multilayer structures. The program is executed to calculate hourly heat gain values for these samples over a period of 24 h during design day for Gaziantep, Turkey. It was found that thermophysical properties of roofs or walls have a very profound effect on the time lag (TL), decrement factor (DF) and also heat gain.Öğe Comparison of heat gain values obtained for building structures with real and constant properties(Bitlis Eren Üniversitesi, 2019-12-24) Oktay, Hasan; Yumrutaş, Recep; Argunhan, ZekiThe magnitude of energy consumption due to the heating and cooling of buildings has led to the demand for increasing the thermal performance of building structures. Many investigations are presented in literature arguing to find the effect of each thermophysical property on the thermal characteristics of building components, while the properties have been assumed as independent of each other. In this context, this paper focuses on the effect of each property on heat gain value utilizing relationships between the measurement values of the thermophysical properties of building structures. In the previous study, 102 new wall samples were produced, their thermophysical properties were tested and expressions among these properties are obtained. In this study, the heat gain values through the structures are computed using the solution of the transient heat transfer problem by using both the obtained expressions between the thermophysical properties and assumptions proposed from the literature. Results obtained for varying and constant thermophysical properties have been compared with those values presented in the literature. The results show that the assumptions are not realistic in a significant number of cases. Moreover, if one of the thermophysical properties of a material is known, heat gain values can be calculated easily for the selected wall or roof types.Öğe Comparison of thermal performance of newly produced lightweight wall and roof elements for energy-efficient buildings(Hitit Üniversitesi, 2020-03-01) Oktay, Hasan; Yumrutaş, Recep; Argunhan, ZekiIn this study, both experimental and theoretical investigations are performed to obtain new concrete types with high thermal insulating characteristics for energy-efficient buildings. In this regard, 102 new concrete wall samples were produced using different aggregates at different volume fractions, and their thermophysical properties were tested according to EN and ASTM standards. The experimental research focused on developing new wall or roof types with higher thermal insulation properties in order to reduce the energy consumption of buildings due to heating or cooling. In order to specify the thermal performance of developed lightweight concretes, an analytical solution method is developed by the Complex Finite Fourier Transform CFFT method to estimate heat gain utilizing measured thermophysical properties data of those samples. The results indicated that the reduction in heat gain value was obtained as 83.21 % for the PC100 wall corresponding to conventional concrete. Consequently, the thermal insulation effect of those samples shows excellent potential for development.