Arama Sonuçları

Listeleniyor 1 - 4 / 4
  • Öğe
    Forecasting financial indicators by generalized behavioral learning method
    (Springer Nature, 2017-08-09) Ertuğrul, Ömer Faruk; Tağluk, Mehmet Emin
    Forecasting financial indicators (indexes/prices) is a complex and a quite difficult issue because they depend on many factors such as political events, financial ratios, and economic variables. Also, the psychological facts or decision-making styles of investors or experts are other major reasons for this difficulty. In this study, a generalized behavioral learning method (GBLM) was employed to forecast financial indicators, which are the indexes/prices of 34 different financial indicators (24 stock indexes, 2 forexes, 3 financial futures, and 5 commodities). The achieved results were compared with the reported results in the literature and the obtained results by artificial neural network, which is widely used and suggested for forecasting financial indicators. These results showed that GBLM can be successfully employed in short-term forecasting financial indicators by detecting hidden market behavior (pattern) from their previous values. Also, the results showed that GBLM has the ability to track the fluctuation and the main trend.
  • Öğe
    A noninvasive time-frequency-based approach to estimate cuffless arterial blood pressure
    (TÜBİTAK, 2018-09-28) Ertuğrul, Ömer Faruk; Sezgin, Necmettin
    Arterial blood pressure (ABP) is one of the most vital signs in the prophylaxis and treatment of blood pressure-related diseases because raised blood pressure is the most significant cause of death and the second major cause of disability in the world. Higher ABP yields greater strain on arteries and these extra strains turn arteries into thicker, less flexible, and more narrow structures. This increases the possibility of having an artery busting or artery occlusion, which are the primary reasons for heart attacks, kidney disease, or strokes. In addition to its importance in monitoring cardiovascular homeostasis, measurement of ABP is imperative in surgical operations. In this study, a simple and effective approach was proposed to estimate ABP from electrocardiogram (ECG) and photoplethysmograph (PPG) signals by an extreme learning machine (ELM) and statistical properties of the ECG and/or PPG signals in the time-frequency domain. To evaluate and apply the proposed approach, the Cuffless Blood Pressure Estimation Dataset, which was published and shared by UCI, was employed. First, the statistical properties were extracted from ECG and PPG signals that were in the time-frequency domain. Later, extracted features were employed to estimate cuffless ABP for each subject by the ELM and some popular machine learning methods. Achieved results and reported results in the literature showed that the proposed approach can be successfully employed for estimating cuffless blood pressure (BP) from ECGs and/or PPGs. Additionally, with the proposed approach, the systolic BP, mean BP, and diastolic BP can be calculated simultaneously.
  • Öğe
    Developing correlations by extreme learning machine for calculating higher heating values of waste frying oils from their physical properties
    (Springer Nature, 2017-11-01) Altun, Şehmus; Ertuğrul, Ömer Faruk
    In this study, a novel approach was proposed based on extreme learning machine (ELM) for developing correlations in order to calculate higher heating values (HHVs, kj/kg) of waste frying oils from their physical properties such as density (ρ, kg/m 3 ) and kinematic viscosity (v, mm 2 /s) values. These values can easily be determined by using laboratory equipment. For developing the correlations, an experimental dataset from the literature covering 35 samples was collected to be employed in the training and validation steps. The obtained optimum parameters of artificial neural network in the training stage by ELM were employed to develop new correlations. The HHVs calculated by using density-based correlation (HHV = 50823.183 − 12.34095ρ) showed the mean absolute and relative errors of 145.8048 kJ/kg and 0.3695 %, respectively. In the case of the viscosity-based correlation (HHV = 40172.85 − 17.93615v), they were found as 129.04 kJ/kg and 0.327 %, respectively. Additionally, new correlations were performed better than those available in the literature and those obtained by other machine learning methods; therefore, it is highly suggested that the proposed approach can be used for developing new correlations.
  • Öğe
    Determining optimal artificial neural network training method in predicting the performance and emission parameters of a biodiesel-fueled diesel generator
    (International Journal of Automotive Engineering and Technologies, 2019-04-03) Altun, Şehmus; Ertuğrul, Ömer Faruk
    Artificial neural network (ANN) methods were employed and suggested in modeling the emissions and performance of a diesel generator fueled with waste cooking oil derived biodiesel during steady-state operation. These papers are generally built on determining optimal network structure, but the modelling accuracy of an ANN is also highly dependent on employed training method. In modeling, operating conditions and fuel blend ratio were used as the inputs while the performance and emission parameters were the outputs. The modeling results obtained by conventional ANNs that were trained by back propagation (BP) learning algorithm, radial basis function (RBF), and extreme learning machine (ELM) were compared with experimental results and each other. The accuracy of the estimations by ELM was above 95% for all the output parameters except for specific fuel consumption and thermal efficiency. Moreover, ELM performed better than BP and RBF with lower mean relative error (MRE) in case where the emissions were estimated. The ELM provided correlation coefficients of 0.987, 0.950 and 0.996 for unburned hydrocarbons (HCs), nitrogen oxides (NOx) and smoke opacity (SO), respectively, while for BP, they were 0.973, 0.818, 0.993, and for RBF, 0.975, 0.640 and 0.981. The most suitable training function for each emission and performance parameters of diesel generator was determined based on obtained accuracies.