Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Öğe
    Model and formulation in grinding mechanism having advanced secondary rotational axis
    (SAGE, 2019-04-15) Adıyaman, Oktay; Demir, Zülküf
    ‘‘Grinding Mechanism having Advanced Secondary Rotational Axis’’ is one of the newer plane surface grinding methods that has an uncommon abrasion mechanism. Unlike conventional methods, in Grinding Mechanism having Advanced Secondary Rotational Axis, there are two rotations of a wheel. The first rotation is the same as the conventional grinding methods, which is the circumferential rotation. The other rotation is the newly developed axial rotation, where the wheel rotates around itself perpendicular to its radial axis. In the grinding process, the grinding force, energy, power, and temperature are directly related to the material removal rate. In this article, the chip model in Grinding Mechanism having Advanced Secondary Rotational Axis was addressed and material removal rate was reformulated. The new chip ratio formula was adapted to the grinding force, energy, power, and temperature in the conventional plane surface grinding method. The chip formed in the conventional plane surface grinding method consists of two-dimensional xy plane. In Grinding Mechanism having Advanced Secondary Rotational Axis, on the other hand, the chips consist of threedimensional xyz plane. The reason behind this is the second rotation obtained in Grinding Mechanism having Advanced Secondary Rotational Axis (axial rotational motion). The chip model was obtained from the combination of two rotations in Grinding Mechanism having Advanced Secondary Rotational Axis. As a result, the resulting chip model increased the material removal rate only slightly and this increase was negligible. Accordingly, an increase in grinding force, energy, power, and temperature was observed at negligible rates.
  • Öğe
    An experimental investigation of the effects of point angle on the high-speed steel drills performance in drilling
    (SAGE, 2018-11) Demir, Zülküf
    The differences in the cutting speed are a serious problem along the cutting edge of the drill, in drilling operations. This problem can partly be solved reducing the length of the cutting edge via changing the drill point angle. In addition, in this study, the effect of point angle, feed rate, and cutting speed on drilling is investigated. For identifying the optimum cutting parameters, AISI 1050 steel alloy was selected as the experimental specimen, these specimen were pre-drilled 5 mm in diameter due to eliminating the effect of the chisel edge. In the experiments, the holes were drilled only at a depth of 10 mm in order not to give any harm to the dynamometer while measuring thrust force. For this aim, in drilling process, drills with point angle of 100°, 118°, 136°, 154°, and 172° were selected. In conclusion, the thrust force, the tool wear, and the surface roughness linearly decreased with increasing point angles due to less removal chip area, in per revolve of the tool. However, the thrust force, the tool wear, and the surface roughness were adversely affected at higher feed rates and lower cutting speeds. The hole dimensional accuracy decreased at lower feed rates and cutting speeds but at higher point angles and concurrently at higher feed rates but lower point angles and cutting speeds. However, the hole dimensional accuracy showed more decisiveness at 118° than other point angles, while the highest dimensional accuracy values recorded at 136° point angle, at higher cutting speeds.