Arama Sonuçları

Listeleniyor 1 - 5 / 5
  • Öğe
    On Arf numerical semigroups
    (SCIK Publishing Corporation, 2016) Süer, Meral; İlhan, Sedat
    In this study, we obtain an Arf semigroup by means of a sequence. We also establish some results on the Arf semigroup
  • Öğe
    The results on some Arf numerical semigroups with multiplicity 8
    (İksad Publications, 2019-12-16) Süer, Meral; İlhan, Sedat; Karakaş, İbrahim
    In this paper, we will give some results about Frobenius number, Apery set, type, genus and determine number of Arf numerical semigroup S such that m S() 8 = and CS C ( ) 0, 2,3, 4,5,6,7 ( mod8).
  • Öğe
    On a family of saturated numerical semigroups with multiplicity four
    (TÜBİTAK, 2017-01-16) Süer, Meral; İlhan, Sedat
    In this study, we will give some results on Arf numerical semigroups of multiplicity four generated by {4, k, k + 1, k + 2} where k is an integer not less than 5 and k ≡ 1(mod 4).
  • Öğe
    Some results on Arf numerical semigroups with multiplicity 8
    (Harran Üniversitesi, 2017-05) Süer, Meral; İlhan, Sedat
    A numerical semigroup is a subset of the set of nonnegative integers (denoted here by ¥ ) closed under addition, containing the zero element and with finite complement in ¥ . Note also that up to isomorphism the set of numerical semigroups classify the set of all submonoids of ( , ) ¥ + . Let S be submonoid of ¥ , the condition of having finite complement in ¥ is equivalent to saying that the greatest common divisor (gcd for short) of its elements is one. Those positive integers which do not belong to S are called gaps of S . The number of gaps of S is called the genus of S and it is denoted by G S( ) . The largest gaps of S is F S( ) if S is different from ¥ . m S s S s ( ) min : 0 = Î > { } are called multiplicity of S , respectively. Also, n S Card F S S ( ) 0,1,2,..., ( ) = Ç ({ } ) is called the number determine of S . If a Î ¥ and a S Ï , then a is called gap of S . We denote the set of gaps of S , by H S( ) , i.e, H S S ( ) \ = ¥ .The G S Card H S ( ) ( ( )) = is called the genus of S . Also, It known that G S F S n S ( ) ( ) 1 ( ) = + - . A numerical semigroup S is called Arf if x y z S + - Î for all x y z S , , Î , where x y z ³ ³ . This definition was first given by C. Arf in 1949. In the study, we intend to examine the Arf numerical semigroup with multiplicity eight and fixed conductor. We will also able to compute the notable elements and special sets of these numerical semigroups.
  • Öğe
    On the one half of an Arf numerical semigroup
    (SCIK Publishing Corporation, 2015) Süer, Meral; İlhan, Sedat
    In this study, we will characterize the Arf numerical semigroup that is computed in a quotient of an Arf numerical semigroup by an positive integer. We will also obtain the one half of this special Arf numerical semigroup and give some results about this numerical semigroup.